• Title/Summary/Keyword: Air Supplying System

Search Result 101, Processing Time 0.02 seconds

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Damper Locationfor Uniform Air Egress Velocity in the case of Two Fire Doors (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 2개 출입문이 존재할 경우 균일한 방연풍속을 얻기 위한 댐퍼 위치 선정방법)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Vestibule pressurization system should produce uniform air egress velocity to prevent the intrusion of smoke into escape route when fire accidents occur inside a building and fire doors are open for evacuation of people. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where two doors are installed varying the location of a damper and louver angle. From simulations, we found that when the damper in the vestibule is located at the center of the wall opposite to two fire doors, the uniform air egress velocity can be obtained.

Multi-Point Radial Artery Pulse Wave Transducer using Pneumatic System (공압 방식에 의한 다지점 요골 맥파 검출 장치)

  • 이종진;정민석;황성하;이종현;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.243-248
    • /
    • 2001
  • A radial artery pulse wave is well known as a good mans to diagnose human body condition in th field of Chinese medical science. Information about constitution as well as organs can be obtained by detecting the artery pulse wave. Recently, the information about the human body constitution may be utilized in accelerating the recovery process of the patient on the basis of comprehensive diagnosis. A radial artery pulse wave is considered as one of promising means in examining the human body constitution. Since the examination has been conducted by the feeling of finger, the diagnosis may occasionally have uncertainty or fatal error. In this paper, a new measuring system is suggested and developed to examine the pattern of a pulse wave correctly. The system is composed of four pressure vessels, pressure sensors and air supplying pumps. One of them is utilized for appropriately pressing the radial artery, three of them for detecting pressure change in several mmHg level. The detected data is shown and discussed.

  • PDF

A Case Study for the Economic Feasibility Model and Analysis of a GDHS Given Geothermal Temperature (기대지열온도하에서 GDHS의 경제성분석 사례연구)

  • Yang, Moon-Hee;Kim, Tai-Yoo;Lee, Sang-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.115-127
    • /
    • 1997
  • A GDHS(Geothermal District Heating System) is a heating system supplying a group of districts with heat extracted from geothermal sources. The advantages of GDHS include saving fuel consumption as well as reducing air pollution. This paper presents a case study for the economic feasibility model and analysis of a GDHS with which central/individual heating systems are replaced. Configuring to a simplified GDHS which consisits of subsurface systems, surface systems, and transmission/distribution systems, we find out the properties of the system and the model parameters affecting the initial investment/operating costs in order to develop a classical economic feasibility model given geothermal temperature. Based on our model parameter space, we analyzed the geothermal development project of the Jejoo Island probabilistically given prior information such as the expected geothermal power, the demand size and the length of transmission/distribution pipes.

  • PDF

Applicability to Engine Fuel of Low Caloric Synthetic Gas from Coal Gasification (석탄가스화기기로부터 발생된 저발열량 합성가스의 엔진연료 적용 연구)

  • 장준영;김태권;유영돈;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.595-600
    • /
    • 2003
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. The electrical system and others for the alternative fuel are also redesigned and replaced. From the results of engine performance data, we have demonstrated that the engine modified by using coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. This paper addresses the need to determine the practical potential for such a concept and to identify further research and development efforts that may be necessary.

  • PDF

Development of Microprocessor-based Automatic Storage Controller and Temperature Auto-measurement System for Horticultural Crops (마이크로프로쎄서를 이용한 과채류 자동 저장 제어장치의 제작과 온도 자동계측 관리 시스템)

  • Park, Je-Kyun;Chun, Jae-Kun;Lee, Seung-Koo;Kim, Kong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.845-849
    • /
    • 1988
  • A laboratory scale storage facility consisting of a cold room, sample jars and a ventilation device was designed and built. Storaging sample jars (1.7 l) for fruit were fabricated with transparent acryl and provided with a constant air flow. For the supplying of air to sample jars, the air distributing system was built with solenoid valves, an air precooling coil and a pressure equalizing tank. To provide the programmable storaging environment of the facility a microprocessor-based controller was designed and installed. The controller was built with the 8 bit microprocessor (Z-80), EPROM, RAM, programmable peripheral interface(8255 PPI), and A/D converter. Softwares for the auto-temperature measurement and control of the storage system were developed and systemized in ROM. The automated storage system was applied to citrus storage, and the temperature of the storage facilities was successfully acquisited to the computer and controlled.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.

Basic Study on the Performance of a Pressure-difference Control Damper Affected by Flow Disturbance in a Wind Tunnel (풍도 내 유동 교란과 자동차압 댐퍼의 성능 특성 기초 연구)

  • Yun, Yung-Min;Lee, Min-Jung;Kim, Nam-Il;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.16-23
    • /
    • 2009
  • The performance characteristics of a smoke damper, which aims to suppress the penetration of smoke to a safe area, have been tested under the regulation of the FIS 001. However, the improvement of the test methods and the regulation has consecutively been requested. From a view-point of fluid mechanical theory, a pressure control damper, that is installed at the end of the flow control system, is important and it dominates flow characteristics in all designed flow systems. In this study, the weak points of the regulation of the FIS 001 concerned with the pressure control damper was visited and the some important characteristics of the damper was examined. Based on these results, it was confirmed that the effects of flow disturbance in the air supplying duct on the performance of the damper are not significant. This results gives some information for the modification of the experimental regulation concerned to the pressure control damper.

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

Study on The Supplying effect of Gas Air Conditioning Systems (가스냉방 보급효과에 대한 연구)

  • Han, J.O.;Chae, J.M.;Choi, K.S.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2011
  • Generally, the generation methods of cooling energy are electric air conditioning (EAC) and gas air conditioning (GAC). The EAC system is caused by increasing peak power during summer. Because the electric energy has a characteristic of non-storage, the peak electric load has been issued social problem annually whether the facility to supply is enough or not. Another way to supply cooling energy, GAC system is worked by gas energy. The absorption chiller and gas engine heat pump have been commercialized for cooling. However, the total capacity of GAC is much less than EAC and it almost depends on EAC for small market. This paper described the status of cooling energy consumption in domestic and expected the cooling energy to be consumed by electric and gas energy up to 2024 year. And also the benefit of GAC was analyzed with the case of its expansion and it was aimed to give background to fit the GAC policy.

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF