• 제목/요약/키워드: Air Suction System

검색결과 148건 처리시간 0.023초

재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구 (An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow)

  • 오신일;박상희
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

자동차용 에어컨 시스템의 성능해석에 관한 연구 (A Study on the Performance Analysis of Automotive Air Conditioning System)

  • 이대웅;유성연
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

마이크로 관류수차의 상수도 관로시스템 적용에 관한 연구 (Application of Micro Cross-Flow Turbine to Water Supply System)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.36-43
    • /
    • 2006
  • Recently, micro hydropower and it's useful utilization are taking a growing interest as a countermeasure of global worming by carbon dioxide and exhaustion of fossil fuel. The purpose of this study is to investigate the possibility of extracting micro hydropower wasted by a valve in water supply system using micro cross-flow hydraulic turbine. In order to fulfill the functions of controlling flow rate and pressure in substitute for the valve, air and water are supplied into an air suction hole which is installed on the side wall of micro cross-flow hydraulic turbine. The results show that in case of supplying a lot of air into the air suction hole, about 50% of flow rate and relatively high value of loss coefficient are controlled by the turbine. Moreover, including high possibility of applying the micro cross-flow turbine to water supply system, extended application of the turbine to the water discharge system of drainage and irrigation canal.

흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구 (A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream)

  • 김원태;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

An Experimental Study on Reducing Condensation in Marine Air Compressors

  • Kim, Bu-Gi;Kim, Hong-Ryeol;Yang, Chang-Jo;Kim, Jun-Ho
    • 해양환경안전학회지
    • /
    • 제21권3호
    • /
    • pp.303-308
    • /
    • 2015
  • Compressed air has many uses on board ship, ranging from diesel engine starting to the cleaning of machinery during maintenance. In an effort to enhance the performance of the marine compressed air system, this work studied a way to reduce condensation from the air compressor via experiments. Especially more condensation is produced when the temperature at compressor outlets and the humidity of the air are higher. so in the research, drain production change has been observed by additionally installing the cooling fan on the suction portion of the air to air compressor and this is the method for reducing the compressed air drain that has passed through the compressor. For the result, it was verified that when the cooling fan was used, less drain was made where per hour it was 500.9ml of drain and the measured result after installing the cooling fan was that less drain was made. Other additional and various researches are needed including experiments like silica gel passing through the suction portion afterwards.

수중 유해성 유기퇴적물의 수거를 위한 Air-lifting & Suction-pumping System 개발 (Development of the Air-lifting & Suction-pumping System to Remove the Noxious Deposit in the Underwater)

  • 김성근;송도성;강문규;이상무;최영찬;고유봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2002
  • Eutrophic matters accumulated on the bottom of sea, river and lake cause red tide phenomenon in ocean and outbreak green algae in river and lake. Systems are developed to remove the noxious deposit. But the existing systems remove not only the eutrophic matters but also natural materials, sand, pebbles etc. that should remain at the bottom. This paper describes a new system that can safely, and economically take away the noxious deposit in underwater. High pressure water jet is used to induce vortices in the triangular suction section, and air-lifting pump to lift up the deposit. The mixture of the water and deposit is filtered through the drum filters. An under camera shows the under water situation along the moving direction of the system that is controlled by a remote operator. This remote controlled moving system obliterate the necessity of the diver that usually costs high. The experimental results show the effectiveness of the suggested system.

  • PDF

자흡방식에 의해 마이크로버블을 발생시키는 충돌 노즐에 대한 연구 (A Study on the Collision Nozzle for Generating Microbubble by Self-Suction Method)

  • 강우진;박상희;유성훈
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1047-1053
    • /
    • 2023
  • An experimental study was performed on the collision nozzle system that generates microbubble by air self-suction using a venturi nozzle. This study experimentally investigates the pressure of a pump and a dissolution tank, water flow rate, air self-suction amount and microbubble generation amount. The experimental conditions were varied by changing the diameter of the collision nozzle (de=4,5,6,7,8mm), the pumping power(0.5hp, 1.0hp) and the capacity of the dissolution tank(4.4L, 8/8L). The pressure change of the pump according to the outlet diameter of the collision nozzle showed that the 1.0hp pump power operated more stably than the 0.5hp pump. The pressure change in the dissolution tank was shown to decrease rapidly as the outlet diameter of the nozzle increased. The flow rate of recirculating water was shown to increase as the nozzle diameter increased. Additionally, it was shown that the pump capacity of 1.0hp increased the flow rate more than that of 0.5hp. The self-suction air flow rate was shown to occur above de=6mm, and the air flow rate increased as the nozzle diameter increased. Also, as the pump capacity increased, the self-suction amount of air increased. It was shown that the amount of microbubble less than 50mm generated was maximum when the nozzle diameter was 6mm, the pump power was 1.0hp, and the dissolution tank capacity was 8.8L.

R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구 (An experimental study on the performance of a window system air-conditioner using R407C and R410B)

  • 김만회;신정섭;김권진
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

국소환기시스템의 후드형상 개선에 따른 수치해석 (Numerical Analysis on Hood Shape Improvement of Local Ventilation System)

  • 이중섭;장성철;최주홍
    • 설비공학논문집
    • /
    • 제21권4호
    • /
    • pp.260-265
    • /
    • 2009
  • The aim of this study is to remove crack on a ventilation device at the suction part of zinc plating factory, and the main point is making optimum configuration by improving an existing hood system. The result shows that existing hood system has problem with duct configuration, angle and reducer. Model-5 shows lowest pressure difference as meaning of suction capability. The hood inlet surface has most uniform suction capability.

입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구 (Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining)

  • 김경진
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF