• Title/Summary/Keyword: Air Spring

Search Result 836, Processing Time 0.029 seconds

Vibration Test of Truck with Air Suspension & Development of Korean Type Air Suspension (공기 현가장치를 장착한 화물차량의 진동측정 및 한국형 공기 현가장치 모듈 개발)

  • Woo, Jun-Seong;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Tae-Won;Kwon, Soon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.332-339
    • /
    • 2006
  • A leaf spring suspension has been widely used since it can carry big load and simplicity. But one major drawback is the poor ride performance because of the friction in the system and the high stiffness coefficient. To overcome these, air spring suspension can be used. The air spring suspension system can improve the ride of the heavy vehicle significantly and also it can adjust the height to the loading and unloading. A truck with the leaf suspension system is modified with the air suspension system and the performance of the vehicle is compared using the suggested method. The existing leaf suspension can be replaced with the air suspension system to improve the performance.

  • PDF

Experimental Analysis on the Effect of Grain Size of ZK60 Sheet on the Spring-Back Characteristics (마그네슘합금 ZK 60의 결정립 크기에 따른 스프링백 특성 분석)

  • Kang, S.H.;Kang, H.D.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.398-400
    • /
    • 2008
  • In this work, an air-bending test using magnesium alloy ZK60 sheet was carried out at the various temperatures from room temperature to $300^{\circ}C$ in order to investigate the effect of grain size on the spring-back characteristic. It was found out from experiments that the amount of spring-back was nearly zero at all temperature range when the specimens with grain sizes of 14.66 and $60.71{\mu}m$ were bent by $90^{\circ}$. On the other hand, the spring-back amount dramatically increased at room temperature and phenomenon of spring-go was observed at high temperature when the specimen with submicro grain size of $0.98{\mu}m$ was bent by $90^{\circ}$. From this kind of different spring-back characteristics according to the grain size, it was confirmed that the grain size of material is one of the important factors which have an effect on the spring-back.

  • PDF

Development of Air Spring Damper System(ASDS) (공기 스프링 댐퍼 시스템(ASDS)의 개발)

  • Kim, Dong Baek;Park, Heung Sik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.829-838
    • /
    • 2021
  • Purpose: The Air Spring Damper System (ASDS) is proposed when existing concrete structures that have not been seismic resistant for economic and technical reasons or low-rise concrete structures that are difficult to earthquake. Method: To conduct a study on the damping force antigen in the kinetic equation of free vibration, we analyze whether this device has damping ability as a damper experimentally and theoretically, and examine the possibility of field application. Result: The air damper system is considered to be more economical than steel hysteresis dampers even if the number of dampers increases due to its easy manufacture and construction and low restrictions on shape, size, material, etc. Conclusion: In an air spring damper system, it is essential to reduce the diameter of the air inlet/outlet hole to improve the damping ratio, and in this case, if the diameter exceeds a certain lower limit, consideration of the compressibility of air is required, so further research is needed.

Development Of Active Vibration Isolation System Using Fuzzy Method (퍼지 방법을 이용한 능동 방진 시스템의 개발)

  • Yang, Xun;An, Chae-Hun;Jin, Kyoung-Bog;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.731-736
    • /
    • 2007
  • Vibration isolation equipments are mostly required in precise measurement and manufacturing system. Among all the vibration isolation system, air-spring is the most widely used equipment because of low resonant frequency and high damping ratio. In this study, Takagi-Sugeno fuzzy method is used to design an active vibration isolation system using air-spring, and compared the fuzzy method with passive control method and PID control method. Due to the non-linearity characteristics of air-spring, fuzzy controller was verified to be the most effective both in simulation and experiment.

  • PDF

Fuzzy Controller Design for Active Vibration Isolation System Using Air-spring (공기스프링을 이용한 능동 방진 시스템의 퍼지 제어기 설계)

  • Yang, Xun;An, Chae-Hun;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.185-190
    • /
    • 2007
  • In recent days, vibration isolation system is mostly required in precise measurement and manufacturing system to reduce vibration due to external disturbances and internal actuators. Among all the vibration isolation systems, air spring is widely used because of its low resonant frequency and high damping ratio. In this study, we first analyze the passive air-spring system using leveling valve, and then design the active vibration isolation system. Because the non-linearity of pneumatic characteristics, we try to design the fuzzy controller which is better than PID controller at complex and non-linear system, and then compare them both in experiment and simulation.

  • PDF

A Study on the Coarse Particles Burden to Aerosol in Seoul Area (粗大粒子가 大氣淨遊粉塵에 주는 負荷)

  • 이윤재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.71-82
    • /
    • 1985
  • The effect on the particulate matters in the atmosphere was investigated in Seoul area from March, 1984 to Aprill, 1985. Aerosols were collected by filters on nine stages Andrsen Air Sampler, and size distribution and total concentration of the aerosols, Fe and Pb were measured. In spring with Yellow Sand the concentration of particles in aerosols was 185.55$\mug/m^3$ and CP/TA was 65.9%. But in spring without Yellow Sand those of particles was 135.45$\mug/m^3$ and CP/TA was 58.6%. Accordingly the concentration of coarse particles with Yellow Sand was higher than without them in Spring. Above results indicate that in Seoul Area the main source of air pollution originated from natural burdens, especially from soil. The concentration of Pb was similarly valued through both seasons in Seoul area but fine particles valued above coarse particles. On the other hand, in urban area, the natural and anthropogenic sources have influenced on the concentration of Pb. With referred to particle size distribution for Fe, the concentration of coarse particles was 0.168$\etag/m^3$ (CP/TA: 74.3%) in Spring with Yellow Sand, 0.096$\mug/m^3$ (CP/TA: 71.6%) without Yellow Sand and 0.083$\mug/m^3$ (CP/TA: 67.4%) in winter, respectively. Compared with fine particles, all of them were higher. It indicated that the origin of coarse particles in urban air was not related to anthropogenic source. The concentration of Fe was influenced by Yellow Sand and contributed to air pollution.

  • PDF

Computation of Complex Stiffness of Inflated Diaphragm in Pneumatic Springs by Using FE Codes (상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.919-925
    • /
    • 2006
  • An accurate mathematical model for complex stiffness of the pneumatic spring would be necessary for an efficient design of a pneumatic spring used in vibration isolation tables for precision instruments such as optical devices or nano-scale equipments. A diaphragm, often employed for prevention of air leakage, plays a significant role of complex stiffness element as well as the pressurized air itself Therefore, effects of the diaphragm need to be included in the dynamic model for a more faithful description of dynamic behavior of pneumatic spring. But the complex stiffness of diaphragm is difficult to predict In an analytical way, since it is a rubber membrane of complicated shape in itself. Moreover, the diaphragm should be expandable in response to pressurization inside a chamber, which makes direct measurement of complex stiffness of diaphragm extremely difficult. In our earlier research, the complex stiffness of diaphragm was indirectly measured, which was just to eliminate the theoretical stiffness of pressurized air from the measured complex stiffness of the pneumatic spring. In order to reflect complex stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however. it is required to be able to predict beforehand. In this paper, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes (e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.

Temporal Variation of Air Temperature in Ice-Valley at Milyang in Association with Ice Formation

  • Lee, Soon-Hwan;Hwang, Soo-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.598-602
    • /
    • 2007
  • A long-term in situ observation was carried out in the Ice-valley at Milyang in order to explain the factors and processes associated with the summertime ice formation. The variation of temperature inside Ice-valley in relation with ice formation in summer time was found to depend on precipitation rate in spring and cold air sinking in autumn and winter. The rate of temperature rising tends to correspond to sensible heat release depending on the precipitation amount at the freezing location. The reason of the cold air accumulation in a talus in the Ice-valley is the cold air sinking over the surface of talus due to the occurrence of outside clod air mass and the accumulated cold air from autumn to spring flow outside at the bottom of talus. The out-flowing cold air can result in the ice formation in the hot summer.