• Title/Summary/Keyword: Air Speed Estimation

Search Result 100, Processing Time 0.023 seconds

Estimation of Wall Wetting Fuel at Intake Port and Model Based Prediction A/F in a S.I. Engine (가솔린 엔진에서 액막 연료량 추정 및 이를 이용한 공연비 예측에 관한 연구)

  • 황승환;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.116-122
    • /
    • 1999
  • According to the stringent exhaust emission regulation, precise control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. The purpose of this study is to estimate of wall wetting fuel in the intake port and the inducted fuel mass was predicted by using wall wetting fuel model . The model coefficient($\alpha$,$\beta$) and fuel film mass on the port wall were determined from measured in-cylinder HC concentration using FRFID after injection off. The fuel film mass was increased, but $\alpha$(ratio of directly inducted fuel mass into cylinder from injected fuel mass) was decreased with increasing load at the same engine speed. $\beta$is nearly constant value(0.8~0.9). when injected fuel mass is varied at 1500rpm , the calculated air fuel ratio using well wetting fuel model was nearly the same as measured by UEGO.

  • PDF

Quantitative Estimation of Precipitation Scavenging and Wind Dispersion Contributions for PM10 and NO2 Using Long-term Air and Weather Monitoring Database during 2000~2009 in Korea (장기간 대기오염 및 기상측정 자료 (2000~2009)를 이용한 PM10과 NO2의 강수세정 기여율과 바람분산 기여율의 정량적 추정연구)

  • Lim, Deuk-Yong;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.325-347
    • /
    • 2012
  • Long-term air and weather data monitored during the period of 2000 to 2009 were analyzed to quantitatively estimate the precipitation scavenging and wind dispersion contributions of ambient $PM_{10}$ and $NO_2$ in Korea. Both air pollutants and meteorological data had been respectively collected from 120 stations by the Ministry of Environment and from 20 weather stations by the Korea Meteorological Administrations in all parts of Korea. To stochastically identify the relation between a meteorological factor and an air pollutant, we initially defined the SR (scavenging ratio) and the DR (dispersion ratio) to separately calculate the precipitation and wind speed effects on the removal of a specific air pollutant. We could then estimate the OSC (overall scavenging contribution) and the ODC (overall dispersion contribution) with considering sectoral precipitation and wind speed probability density distributions independently. In this study, the SRs for both $PM_{10}$ and $NO_2$ were generally increased with increasing the amounts of precipitation and then the OSCs for $PM_{10}$ and $NO_2$ were estimated by 22.3% and 15.7% on an average in Korea, respectively. However, the trend of the DR was quite different from that of SR. The DR for $PM_{10}$ was increased with increasing wind speed up to 2.5 m/s and further the DR for $NO_2$ showed a minimum in the range of $1<WS{\leq}1.5$. The ODCs for $PM_{10}$ and $NO_2$ were estimated by 14.9% and 1.0% in Korea, respectively. Finally, we have also provided an interesting case study observed in Seoul.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse (일중 피복온실의 관류열전달계수 산정)

  • Hwang, Young-Yun;Lee, Jong-Won;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

Dynamic Line Rating Estimation Using Indirect Conductor Method in Overhead Transmission Lines (간접도체 방식을 이용한 가공송전선의 동적송전용량 추정)

  • Kim, Sung-Duck;Lee, Seung-Su;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.189-197
    • /
    • 2004
  • The thermal rating of an overhead conductor, which is the maximum allowable current, is generally calculated on the basis of heat balance equation found in IEEE P738 standard. This is given as a function of the weather conditions such as air temperature, wind speed, wind direction, and sun heat. Wind speed among such weather parameters is strongly affected on determining the line rating when it appears very low level. Therefore there may occur inaccuracy since most anemometers used in line rating monitor systems may show low resolutions and stall speed performance. In this paper, we introduce a new methodology for determining the dynamic line rating in overhead transmission lines, without using my anemometer. It was shown that wind speed can be estimated by the temperatures of 2 indirect conductors, and through experimental study, the dynamic line rating obtained by the estimated wind speed was very closely that of weather model.

A Study on the Estimation of Emission Factors and Emission Rates for Motor Vehicles (자동차에 의한 오염물질 배출계수 및 배출량 산출에 관한 연구)

  • 조강래;엄명도;김종춘;홍유덕;김종규;한영출
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Exhaust emissions are calculated as a product of the emission factor and the vehicle kilometer traveled(VKT). The emission factor is a function of several parameters such as vehicle model year, vehicle mileage, traffic conditions, etc. The representative driving cycles classified as ten different types of an average vehicle speed were selected by analyzing passenger car driving patterns in Seoul. 51 vehicles were sampled and analyzed by types of vehicles, fuels used, model years and vehicle mileages also, exhaust emissions of them were measured by chassis dynamometer. Regression equations between average vehicle speeds and exhaust emissions are made for the estimation of emission factors at different vehicle speeds. Annual emission rates of air pollutants from motor vehicles in Korea were 1116$\times10^3 ton, 149\times10^3 ton, 413\times10^3 ton and 67\times10^3$ ton for CO, HC, NOx and particulats, respetively in 1990. It was found that 56% of CO and 49% of HC were originated from passenger cars and taxis, in addition, 87% of NOx and 100% of particulates were from buses and trucks using diesel fuels.

  • PDF

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network (심층신경망을 활용한 풍속 예측 개선 모델 개발)

  • Ku, SungKwan;Hong, SeokMin;Kim, Ki-Young;Kwon, Jaeil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.597-604
    • /
    • 2019
  • Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.

Analytic Derivation and parameters estimation for SRM Design (스위치드 릴럭턴스 전동기 설계를 위한 특성해석 및 회로정수 도출)

  • Jang, Seok-Myeong;You, Dae-Joon;Park, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.53-55
    • /
    • 2007
  • Industrial interest in switched reluctance moor (SRM) drives has varied since 1850s. This has been primarily due to the emerging markets for variable speed drives in consumer and industrial products, such as home appliances, air conditioning, hand tools, fans, pump motor, etc. However, SRM has been plagued with the acoustic noise and vibration problem by input power of fixed section. Therefore, This paper offers electromagnetic analysis for torque ripple reduction in mechanical geometry and electric parameters. This means that the rotor pole arc and electric parameters have related to produce the active and negative torque. This analysis results are verified by the finite element method.

  • PDF