• Title/Summary/Keyword: Air Pollution Index

Search Result 135, Processing Time 0.024 seconds

Evaluation of the Effects of Sulfur Dioxide Gas using the Water-Soluble Sulfur Content, Photosynthetic Rate and the Visible Injured Index of Pear(Pyrus serotina) in the Ulsan Industrial Complex Area (배나무잎의 수용성 황 함량, 광합성속도, 가시피해도 분석을 이용한 울산공단지역 아황산가스 영향 평가)

  • Lee, Yong-Beom;Choi, Ki-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.144-154
    • /
    • 1995
  • This study was conducted for the evaluation of air-pollution using pear plant. Twenty-three sites around the Ulsan Industrial Complex Area were selected for the study. The water soluble sulfur content, photosynthetic rate and the visible injured index of pear leaves were evaluated and the results are summarized as follows: 1. Water-soluble sulfur content of pear leaves at survey sites was shown to be an average of 0.201%. The content of their leaves at polluted sites ranged from 0.220 to 0.496%. Water-soluble sulfur content of the pear leaves decreased as the distance became far from the Industrial Complex. 2. The photosynthetic rate of pear leaves decreased with an accumulation of water-soluble sulfur content. However it increased as the distance became greater within the five-kilometer radius of the pollutant. 3. More than 60% of injured rate was shown in pear plant within the five-kilometer radius of the pollutant in 1993. There were high correlations between the visible injured index items. Compared with 1988, the most severely injured sites in 1988 were Yochon-dong and Yaum-dong. But in 1993, they moved to the Yongcham-dong and Bugok-dong area. 4. Water-soluble sulfur content of pear leaves was correlated with the photosynthetic rate of pear leaves. The same tendency was shown between water-soluble sulfur and total injured index. This method using pear plant will be applied to the evaluation of air pollution.

  • PDF

The Indoor Air Purification System Using LED and Fan for Epipremnum aureum (스킨답서스에 LED와 Fan을 이용한 실내공기정화 시스템)

  • Kim, Taehyun;Park, Junmo;Kim, Soochan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.167-173
    • /
    • 2018
  • We propose an air purification system that utilizes aerial plant parts and root zone of indoor plants where light is insufficient and air circulation is bad. In order to maximize the air purification effect of the plant, the aerial plant parts illuminates mixed light combining blue and green LED and CRI(Color Rendering Index) LEDs close to natural light, respectively. And the root zone was forcibly circulated by the fan to use the soil as a filter. The indoor air purification system combined with the light source and the fan removed most polluted air in the shortest. In the case of mixed light and CRI LEDs of indoor air purification system, fine dust decreased by 14%, 14.2%, and TVOC(Total volatile organic compounds) decreased by 7.5% and 9.4%, respectively. In the experiment in which the fan was operated for 15 minutes, the TVOC decreased to 97.8%. The photosynthesis of the plant and the use of soil as a filter were able to purify polluted air in a short time. And the fan's temporary operation gave the similar effect of continuous operation.

A Satellite View of Urban Heat Island: Causative Factors and Scenario Analysis

  • Wong, Man Sing;Nichol, Janet;Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.617-627
    • /
    • 2010
  • Although many researches for heat island study have been developed, there is little attempt to link the findings to actual and hypothetical scenarios of urban developments which would help to mitigate the Urban Heat Island (UHI) in cities. The aim of this paper is to analyze the UHI at urban area with different geometries, land use, and environmental factors, and emphasis on the influence of different geometric and environmental parameters on ambient air temperature. In order to evaluate these effects, the parameters of (i) Air pollution (i.e. Aerosol Optical Thickness (AOT)), (ii) Green space Normalized Difference Vegetation Index (NDVI), (iii) Anthropogenic heat (AH) (iv) Building density (BD), (v) Building height (BH), and (vi) Air temperature (Ta) were mapped. The optimum operational scales between Heat Island Intensity (HII) and above parameters were evaluated by testing the strength of the correlations for every resolution. The best compromised scale for all parameters is 275m resolution. Thus, the measurements of these parameters contributing to heat island formation over the study areas of Hong Kong were established from mathematical relationships between them and in combination at 275m resolution. The mathematical models were then tabulated to show the impact of different percentages of parameters on HII. These tables are useful to predict the probable climatic implications of future planning decisions.

A Study on Acute Effects of Ambient Air Particles on Pulmonary Function of Schoolchildren in Ulsan

  • Yu, Seung-Do;Kim, Dae-Seon;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Jong-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.183-186
    • /
    • 2003
  • To evaluate the effect of air pollution on respiratory health in children, we conducted a longitudinal study in which children were asked to record their daily levels of peak expiratory flow rate using potable peak flow meter (mini-Wright) far 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in you, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of PM$\_$10/ and PM$\_$2.5/ over the study period were 64.9$\mu\textrm{g}$/㎥ and 46. l$\mu\textrm{g}$/㎥, respectively. The range of daily measured PEFR in this study was 170-481 l/min. Daily mean PEFR was regressed with the 24-hour. average PM$\_$10/ (or PM$\_$2.5/) levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of PM$\_$10/ or PM$\_$2.5/ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min (95% Cl -1.8, 0.1) decline in PEFR. Even though this study shows negative findings on the relationship between respiratory function and air particles, it is worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely results in misclassification of true exposure levels and this is the first Korean study that PM$\_$2.5/ measurement is applied as an index of air particle quality.

  • PDF

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF

Study on Improving Reliability of Biomonitor by Using CCD Camera (CCD카메라를 이용한 생물감시장치의 독성자료 신뢰성 향상에 관한 연구)

  • Kim, Hyun-Chang;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1351-1357
    • /
    • 2010
  • Water monitoring equipments using daphnia can be used to monitor the pollution levels of a country's main rivers. Such equipments should be capable of providing a prompt warning about increase in the contamination levels, which is evaluated on the basis of impulse number or toxicity index. As unmanned remote control equipments, they must provide reliable pollution monitoring results for each season and for the annual physical changes in each river. Two different equipments based on the impulse number and toxicity index showed different results for the operating rates and for the number of emergency checks required even though both were operated at the same conditions. The results are affected by many parameters such as the presence of any air bubbles and the microscopic pressure. The purpose of this study is to develop a method that can reduce the effect of bubbles or microscopic pressure on the monitoring data. We expect to achieve reliable monitoring data for water pollutants irrespective of the location of the equipment setup.

Land Cover Change and Urban Greenery Prediction in Jabotabek by using Remote Sensing

  • Zain, Alinda-Medrial;Takeuchi, Kazuhiko;Tsunekawa, Atsushi
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.59-66
    • /
    • 2001
  • The tremendous growth of population and physical development in the largest urban agglomeration in Indonesia -the Jakarta Metropolitan Region, also known as Jabotabek (Jakarta, Bogor, Tanggerang, Bekasi)- has created many environmental problems, such as land use conversion, increasing urban temperature, water and air pollution, intrusion of seawater, and flooding. These problems have become more serious as the urban green space (trees, shrubs, and groundcovers) has decreased rapidly with the urbanization process. Urban green space directly benefits the urban environment through ameliorating air pollution, controlling temperature, contributing to the balance of the hydrological system, and providing space for recreation and relaxation. Because there is little hard data to support the claim of decreasing greenery in Jabotabek, it is necessary to measure the amount of urban green space. The paper describes the spatial analysis of urban green space within Jabotabek through the use of a geographical information system (GIS). We used GIS and remote sensing to determine land cover change and predicted greenery percentage. Interpretation of Landsat data for 1972, 1983, 1990, and 1997 showed that Jabotabek has experiences rapid development and associated depletion of green open space. The proportion of green open space fell by 23% from 1972 to 1997. We found a low percentage of urban green space in the center of Jakarta but a high percentage in fringe area. The amount of greenery is predicted by the Ratio Vegetation Index (RVI) model: predicted greenery (%) = [146.04] RVI - 134.96. We consider that our result will be useful for landscape planning to improve the environment of Jabotabek.

  • PDF

Association between ambient particulate matter levels and hypertension: results from the Korean Genome and Epidemiology Study

  • Sewhan Na;Jong-Tae Park;Seungbeom Kim;Jinwoo Han;Saemi Jung;Kyeongmin Kwak
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.51.1-51.15
    • /
    • 2023
  • Background: Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure. Methods: A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1-14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas. Results: Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 ㎛) and PM2.5 (particulate matter with diameters < 2.5 ㎛) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19-1.28) after adjustment. Conclusions: These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.

Real Time Monitoring of Energy Efficiency Operation Indicator on Merchant Ships

  • Barro, Ronald Dela Cruz;Kim, Jun-Seong;Lee, Don-Chool
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.301-308
    • /
    • 2011
  • International Maritime Organization (IMO) proposed the Energy Efficiency Operation Indicator (EEOI) in 2005 and the Energy Efficiency Design Index (EEDI) in 2008 so as to address emission concern and regulation. Likewise, Ship Energy Efficiency Management Plan (SEEMP) and Greenhouse Gas (GHG) monitoring and management are also becoming an issue lately. This paper introduces the energy efficiency design index (operation indicator) monitoring system (EDiMS) software can continuously monitor $CO_2$, $NO_x$, $SO_x$, and PM values emitted from ship. The accurate inventory of ships GHG can be obtained from base of emission result during the engine shop test trial and the actual monitoring of shaft power and ship speed. In addition, the ability to store all exhaust emission and engine operation data can be applied as the useful tool of the inventory work of air pollution and ship energy management plan for the mitigation or reduction of ship emissions.

A Study on the Methods for Usage of Environmental Indexes in Management by Objectives (목표관리에서 환경지표의 활용방법에 관한 연구)

  • Lim, Mann-Taek;Joo, Seung-Ho;Yoon, Kyung-Sup;Kwon, Chang-Yong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.199-208
    • /
    • 2011
  • Environment standards can be used as a foundation of environment administration (specific expression of political goals or quantitative evaluation standards of political effects). When environment adminstration improves severe air or water pollution rapidly, the environment standard can work effectively to show the goals specifically and clearly. The environment index which is designed to evaluate environment systems, should be established to express the environment system generally. To realize sustainable development, the sustainable indexes usually consisting of these three areas in that harmony of environment, economy and society are required. In this research, sustainable environmental indicators to understand the characteristics and to compare likes theme of environmental conditions in international and national level indicators, regional environmental management plan to promote the management by objectives are to provide the basic data. It is desirable for the environmental policies to work harmoniously with direct control, use of economic means and voluntary methods. Regarding the evaluation of environmental index, the action results of civilian's or individual's activities are needed to be reflected into the evaluation.