• Title/Summary/Keyword: Air Pollution

Search Result 6,756, Processing Time 0.035 seconds

Adverse Effects of Air Pollution on Pulmonary Diseases

  • Ko, Ui Won;Kyung, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.4
    • /
    • pp.313-319
    • /
    • 2022
  • Environmental exposure to air pollution is known to have adverse effects on various organs. Air pollution has greater effects on the pulmonary system as the lungs are directly exposed to contaminants in the air. Here, we review the associations of air pollution with the development, morbidity, and mortality of pulmonary diseases. Short-and long-term exposure to air pollution have been shown to increase mortality risk even at concentrations below the current national guidelines. Ambient air pollution has been shown to be associated with lung cancer. Particularly long-term exposure to particulate matter with a diameter <2.5 ㎛ (PM2.5) has been reported to be associated with lung cancer even at low concentrations. In addition, exposure to air pollution has been shown to increase the incidence risk of chronic obstructive pulmonary disease (COPD) and has been correlated with exacerbation and mortality of COPD. Air pollution has also been linked to exacerbation, mortality, and development of asthma. Exposure to nitrogen dioxide (NO2) has been demonstrated to be related to increased mortality in patients with idiopathic pulmonary fibrosis. Additionally, air pollution increases the incidence of infectious diseases, such as pneumonia, bronchitis, and tuberculosis. Furthermore, emerging evidence supports a link between air pollution and coronavirus disease 2019 transmission, susceptibility, severity and mortality. In conclusion, the stringency of air quality guidelines should be increased and further therapeutic trials are required in patients at high risk of adverse health effects of air pollution.

Korean National Emissions Inventory System and 2007 Air Pollutant Emissions

  • Lee, Dae-Gyun;Lee, Yong-Mi;Jang, Kee-Won;Yoo, Chul;Kang, Kyoung-Hee;Lee, Ju-Hyoung;Jung, Sung-Woon;Park, Jung-Min;Lee, Sang-Bo;Han, Jong-Soo;Hong, Ji-Hyung;Lee, Suk-Jo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.278-291
    • /
    • 2011
  • Korea has experienced dramatic development and has become highly industrialized and urbanized during the past 40 years, which has resulted in rapid economic growth. Due to the industrialization and urbanization, however, air pollutant emission sources have increased substantially. Rapid increases in emission sources have caused Korea to suffer from serious air pollution. An air pollutant emissions inventory is one set of essential data to help policymakers understand the current status of air pollution levels, to establish air pollution control policies and to analyze the impacts of implementation of policies, as well as for air quality studies. To accurately and realistically estimate administrative district level air pollutant emissions of Korea, we developed a Korean Emissions Inventory System named the Clean Air Policy Support System (CAPSS). In CAPSS, emissions sources are classified into four levels. Emission factors for each classification category are collected from various domestic and international research reports, and the CAPSS utilizes various national, regional and local level statistical data, compiled by approximately 150 Korean organizations. In this paper, we introduced for the first time, a Korean national emissions inventory system and release Korea's official 2007 air pollutant emissions for five regulated air pollutants.

Evaluation Method of Urban Development Location by APEI (Air Pollution Exposure Index) (대기오염 노출지표에 의한 도시개발 입지의 평가에 관한 연구)

  • Kim, Ki-Bum;Kwon, Woo-Taeg;Kim, Hyung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.267-275
    • /
    • 2007
  • In this study, relationship between the air pollution of Siheung city and the relative contribution of automobiles to the city's pollution was evaluated for the first time. Then, new air pollution exposure index was developed through simulation. Using the newly developed index, two different urban development scenarios were compared to present a sustainable urban development plan to reduce air pollution from the land utilization point of view. According to the result of this simulation, air quality of the city was found to be affected significantly by human activities. More populated area showed worse level of air quality. Any development in the city resulted in more automobile activity and deterioration of air quality. This simulation result thus explains that a rapid increase of automobiles accompanied by the land development near local roadsides in the city is the major cause of air pollution in Siheung city. In this study, if urban activities are vigorous in an area with high air pollution, people are more likely to be exposed to air pollutant under the bad environmental conditions. On the other hand, if urban activities are less vigorous in an area with high pollution or if urban activities are vigorous in an area with less pollution, the environmental condition was positive. The APEI (Air Pollution Exposure Index) was developed based on these considerations. Scenarios 1 and 2 were compared and analyzed using APEI. In result, scenario 1 is the case in which land is developed and used in an environmentally favorable manner. From this study, it was proved that the impact of air pollution on human health can be minimized with proper land use. The result form the current study can be used as the basic information to solve problems from improper land utilization and air pollution (by road traffic). It also can be utilized to evaluate air pollution level according to land use and road characteristics and to help to choose the best location of land use to comply with the road function and status.

Study of Air Quality and Land Use Correlation using GIS (GIS의한 대기오염과 토지이용상태와의 상관성분석에 관한 연구)

  • 최병길;라영우
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.345-352
    • /
    • 2004
  • This study analyzes interrelationship with air pollution quality and land use patterns using GIS. The relationship can be obtained via three steps: (1) making out air pollution map from air pollution information of study area, (2) dividing land use patterns into residential area, commercial area, industrial area, traffic concentrated area, and non-polluted area, and (3) spatial overlaying analysis of GIS. Moreover, through analyzing air pollution quality by land use patterns, pollution sources can be identified. The results also coincide with the characteristics of conventional air pollution finding. More detailed analyses using articulated on site air pollution quality measurement databases are needed to correctly identify the pollution sources through finding interrelationship with land use patterns and air pollution Quality using GIS. The developed method can help trace the path of pollution sources and plan urban land use projects.

  • PDF

Development of Air Pollution Information System Using GIS (e-AIR) (GIS를 이용한 대기질 관리 정보 지원시스템(e-AIR) 구현( I ))

  • 박기학;오승교
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.42-51
    • /
    • 2003
  • Public awareness of air pollution problem has increased the need for real time air pollution information system about changes in air pollution level. The purpose of this study is to construct e-AIR, a user-friendly air pollution information system for urban air quality using GIS(geographic information system) technology for windows. GIS was ideally suited featuring a geographical characteristics(e.g., road, traffics, buildings) and very effectively used in mapping and symbolization for the distribution of the spatial/periodic pollution status(e.g., pie or column chart, graduated symbols) which can be effectively applied to a information system on the web-site. And a user interface, GUI(graphic user interface) was designed very diversely and simply enabled the users connect with e-AIR and obtain a useful information of air quality. A interpretive technique, air pollution health index(e.g., PSI, AEI) was used also which transforms complex data on measured atmospheric pollutant concentrations into a single number or set of numbers in order to make the data more understandable. Eventually the final-step of this study was to construct e-AIR based on Web GIS could be assessed anywhere if internet is available and offer a very useful information services of the air pollution to the public like a weather news.

On large-scale Air Pollution in the Yellow Sea Region: Satellite and Ground Measurements

  • Y. S. Chung;Kim, H. S.;Kim, Y. S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.83-88
    • /
    • 2003
  • The present study details air pollution measurements in the Yellow Sea of East Asia. Large-scale air pollution was observed through satellite images and ground monitors in Chongju-Chongwon of central Korea. Evidence of a duststorm transport and resulting dustfall from the Gobi Desert in north China and Mongolia is shown. Also, transport of anthropogenic air pollutants from China to the Yellow Sea, Korea, and Japan was detected and discussed. It was found that the level of air pollution concentrations at a regional back-ground site increased 2 ∼ 4 times than the values observed with the relatively clean air, when massive air pollution from China moved to the Korean Peninsula. Satellite measurements will be useful for monitoring regional- and global-scale air pollution in the future.

Air Pollution Prediction Model Using Artificial Neural Network And Fuzzy Theory

  • Baatarchuluun, Khaltar;Sung, Young-Suk;Lee, Malrey
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • Air pollution is a problem of environmental health risk in big cities. Recently, researchers have proposed using various artificial intelligence technologies to predict air pollution. The proposed model is Cooperative of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS), to predict air pollution of Korean cities using Python. Data air pollutant variables were collected and the Air Korean Web site air quality index was downloaded. This paper's aim was to predict on the health risks and the very unhealthy values of air pollution. We have predicted the air pollution of the environment based on the air quality index. According to the results of the experiment, our model was able to predict a very unhealthy value.

Study on Development of the Air Pollution Management System for Disaster Prevention of Air Pollution (대기오염 재해방지를 위한 대기오염 관리시스템 구축에 관한 연구)

  • Lim, Ik-Hyun;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • In this study, the air pollution management system based GIS has been developed to estimate the emission rate and air pollution modeling of air pollutants, effectively. This system is able to estimate emission rate of air pollutant and to analyze the emission characteristics with high spatial and temporal resolution. air pollution modeling. The air pollution management system was applied to Gwangyang Bay including large industry complex with a large number of emission sources. The air pollution management system was constructed using the spatial database of emission sources in Gwangyang Bay. It was found that the estimated emission rates of air pollutants is similar to the emission characteristics in Gwangyang Bay. Also, the spatial distribution of pollutants was similar to the location of emission sources. The predicted results of air pollution model was showed a good correlation coefficient (0.75) for TSP. The air pollution management system is expected to be effective tool (database system (GIS)) for the management and the control of air pollution.

  • PDF

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

Comparison of Air Pollution Management Policies between China and Korea

  • SHEN, Ping;PARK, Jae Hong;JUNG, Jong tai
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • With the rapid development of China's industrialization and urbanization, air pollution has become a growing concern. The emergence of air pollution not only affects people's health, but also restricts the development of China's social economy. This paper puts forward specific measures for air pollution control by examining the causes of air pollution and by comparing air pollution status and management policies between Korea and China. Methods of control involve improving the urban environmental management mechanism, spreading awareness of urban environmental management and air pollution management laws and regulations system, strengthening clean energy utilization and urban environmental greening, increasing investment and management funds and more. Through these measures, urban environmental management in China can be accelerated and level of environmental management improved.