• 제목/요약/키워드: Air Operation

검색결과 2,748건 처리시간 0.026초

기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산 (Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors)

  • 조대철;정봉현;장호남
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

급속분리커플링으로 연결된 에어컨의 운전성능에 관한 실험적 연구 (A Study on Performance of Air-condition Linked by Quick Disconnect Coupling)

  • 조수;이수열;성욱주;박희문;심경종;김우승
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.551-556
    • /
    • 2008
  • This study analyzed operation characteristics of air-condition piping is made by quick disconnect coupling. Air-conditioning consists of central compressor 3HP capacity and R22 refrigerant. We experimented with two operation cycles of air-condition under the same environment; one is with quick disconnect coupling. The other is without quick disconnect coupling. As a result, we can observe whether the condensation temperature of former increased by about 3-5. Furthermore, COP decreased by about 10%.

  • PDF

텐덤형 냉방시스템의 안전운전을 고려한 압축기와 전자팽창밸브 제어 (Control of Compressors and Electronic Expansion Valve considering the Safe Operation of a Tandem-type Air-conditioning system)

  • 한도영;김재현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.675-680
    • /
    • 2006
  • Capacities of a tandem-type air-conditioner may be modulated by turning on and off of multiple compressors, and adjusting the position of a electronic expansion valve. In this study, control algorithms for compressors and a electronic expansion valve were developed by using fuzzy logics. The pressure control algorithm was also developed for the safe operation of compressors. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature,

  • PDF

학교교실의 실내공기질 개선을 위한 환기장치 및 공기청정기의 연동제어 알고리즘 개발 및 적용 연구 (A study on Development and Application of Sequential Control Algorithm of Ventilation and Air Cleaning System for Improving Indoor Air Quality in School Classroom)

  • 박환출;이동현;이정재
    • 대한건축학회논문집:구조계
    • /
    • 제36권5호
    • /
    • pp.187-194
    • /
    • 2020
  • This study presents the energy-saving sequential control algorithm to handle indoor CO2 and PM2.5 for the improvement of the air quality of school classrooms. To solve indoor air quality (IAQ) problems, air cleaning and ventilation systems are mainly used for school classrooms. Although air cleaning is able to collect PM2.5, it is difficult to remove harmful gas substances. The ventilation system is suitable to tackle CO and CO2, the volume ventilation, however, is relatively small. In this paper, to remove CO2 and PM2.5, the pollutant balance equation for improving indoor air quality is reviewed. The sequential control algorithm of the ventilation and air cleaning system with four levels of criteria is introduced for the effective removal of pollutants. The proposed sequential control algorithm confirms that indoor CO2 and PM2.5 can be properly controlled below the standard value. In addition, the sequential operation of air cleaning and ventilation systems has shown significant improvement in IAQ compared to the independent ventilation system operation. Particularly, such systems are efficient when outdoor PM2.5 is high.

다수의 히트펌프로 구성된 냉난방시스템에서 하절기 히트펌프의 최적운전에 관한 연구 (A Study on Optimal Operation of Summer Season Cooling System with Numbers of Heat Pumps)

  • 신관우
    • 전기학회논문지P
    • /
    • 제55권1호
    • /
    • pp.35-40
    • /
    • 2006
  • Heat-pump system has a special feature that provides heating operation in winter season and cooling operation in summer season with a single system. It also has a merit that absorbs and makes use of wastewater heat, terrestrial heat, and heat energy from the air. Because heat-pump system uses midnight electric power, it decreases power peak load and is very economical as a result. By using the property that energy source is converted to low temperature when losing the heat, high temperature energy source is used to provide heating water and low temperature energy source is used to provide cooling water simultaneously in summer season. This study made up a heat-pump system with 4 air heat sources and a water heat source and implemented the optimal operation algorithm that works with numbers of heat pumps to operate them efficiently. With the heat-pump system, we applied it to cooling and heating operation in summer season operation mode in a real building.

Health Care Optimization by Maximizing the Air-Ambulance Operation Time

  • Melhim, Loai Kayed B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.357-361
    • /
    • 2022
  • Employing the available technologies and utilizing the advanced means to improve the level of health care provided to citizens in their various locations. Citizens have the right to get a proper health care services despite the location of their residency or the distance from the health care delivery centers, a goal that can be achieved by utilizing air ambulance systems. In such systems, aircrafts and their life spans are the essential component, the flight duration of the aircraft during its life span is determined by the maintenance schedule. This research, enhances the air ambulance systems by presenting a proposal that maximizes the aircraft flight duration during its life span. The enhancement will be reached by developing a set of algorithms that handles the aircraft maintenance problem. The objective of these algorithms is to minimize the maximum completion time of all maintenance tasks, thus increasing the aircraft operation time. Practical experiments performed to these algorithms showed the ability of these algorithms to achieve the desired goal. The developed algorithms will manage the maintenance scheduling problem to maximize the uptime of the air ambulance which can be achieved by maximizing the minimum life of spare parts. The developed algorithms showed good performance measures during experimental tests. The 3LSL algorithm showed a higher performance compared to other algorithms during all performed experiments.

수소 스파크점화 엔진의 저부하 운전에서 열효율 및 질소산화물 배출 개선을 위한 배기가스재순환과 과잉공기 전략 비교 (Comparison of Exhaust Gas Recirculation and Excess Air Strategies for Improving Thermal Efficiency and Reducing Nitrogen Oxides emissions in Hydrogen Spark-ignition Engines at Low-load Operation)

  • 박현욱;이준순;오승묵;이용규;김창업
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.60-67
    • /
    • 2024
  • This study compared exhaust gas recirculation (EGR) and excess air strategies for improving thermal efficiency and emissions of hydrogen combustion engines at low-load operation. The experimental investigation was conducted in a single-cylinder, heavy-duty engine under throttling and wide-open throttle (WOT) conditions. Although both EGR and excess air strategies reduced peak heat release rates and increased combustion durations, the net indicated thermal efficiencies were improved by reducing the pumping losses. Under the constraint of similar nitrogen oxides emissions, the EGR strategy had higher net indicated thermal efficiencies compared to the excess air strategy in throttling operation. However, the difference between their thermal efficiencies was reduced under WOT condition. The trend of reducing nitrogen oxides emissions according to the two strategies was similar.

EnergyPlus와 PSO알고리즘을 이용한 제조플랜트 냉난방/공조시스템의 최적 운영에 관한 연구 (A Study on the Effective Operation of HVAC Systems on Manufacturing Plants by EnergyPlus and PSO Algorithm)

  • 이언;정진우;조문빈;노상도
    • 한국CDE학회논문집
    • /
    • 제18권2호
    • /
    • pp.120-128
    • /
    • 2013
  • Recently, the importance of the HVAC system (Heating, Ventilating and Air Conditioning System) is growing because comfortable working environment has emerged as important element for enhancing work efficiency. HVAC system is a general term of a system that collectively creates desired temperature and state through heating and air conditioning. HVAC system consists of many objects, so it requires a lot of constraints for its effective operation. Thus, specific strategy is needed for an optimal operation of HVAC System for plant. In this paper, manufacturing plants which have HVAC systems has been modeled and the objective function and constraints for an effective operation have been defined. And new strategy for an effective operation of HVAC system with energy simulations has been proposed.

가변용량 압축기를 적용한 에어컨의 냉방운전 시 응축 및 증발온도 특성 (Temperature characteristics of condenser and evaporator of Air-conditioner applying variable capacity compressor under cooling condition)

  • 권영철;전종균
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1325-1331
    • /
    • 2007
  • 본 연구에서는 냉방운전 시 가변용량방식의 압축기를 적용한 시스템 에어컨의 냉방능력과 증발기 및 응축기의 온도특성을 조사하기 위해 압축기 운전율(10가지)과 실내외 온도(16가지)의 변화에 따른 시스템의 운전특성을 실험적으로 조사하였다. 시스템의 운전특성은 칼로리미터를 이용하여 측정되었다. 냉방능력은 실외온도가 낮아질수록 실내온도가 증가할수록 더 큰 값을 그리고 압축기 운전율이 증가할수록 냉방능력은 선형적으로 증가하였다. 응축온도는 실외온도 변화에 증발온도는 실내온도 변화에 더 민감하였다. 또한 압력-엔탈피선도를 이용하여 사이클의 운전특성을 분석하였다.

  • PDF

소형 쉘앤튜브형 열교환기의 운전 조건에 따른 열유동 거동 특성 해석 (Analysis on Characteristics of Behavior of Thermal Flow According to Operation Conditions of Small-sized Shell and Tube-type Heat Exchanger)

  • 양영준
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1109-1115
    • /
    • 2023
  • The shell and tube-type heat exchanger was the most utilized in industrial field because of its simple structure and wide operation conditions and so on. This study was performed to investigate the characteristics of behavior of thermal flow according to operation condition of small-sized shell and tube-type heat exchanger. The operation conditions, here, were set up to flow rate of hot air with temperature of 100℃, number of baffle and cut rate of baffle(BCR) using numerical analysis. As the results, both mean relative pressure and relative pressure drop was increased with quadratic curve in case of less than BCR 25%, however, decreased linearly in case of more than BCR 25%. The collision with first baffle by flow velocity and temperature, of hot air, respectively, was depended on BCR. Further it showed that the behaviors between flow velocity and temperature were almost similar.