• Title/Summary/Keyword: Air Node

Search Result 112, Processing Time 0.03 seconds

Environmental monitoring system research based on low-power sensor network (저전력 센서네트워크 기반 환경모니터링 시스템 연구)

  • Kim, Ki-Tae;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.807-810
    • /
    • 2011
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. USN(Ubiquitous Sensor Network) is the network that widely applies for life of human being. It works out to sense, storage, process, deliver every kind of appliances and environmental information from the stucktags and sensors. And it is possible to utilize to measure and monitor about the place of environmental pollution which is difficult for human to install. It's studied constantly since it be able to compose easily more subminiature, low-power, low-cost than previous one. And also it spotlights an important field of study, graft the green IT and IT of which the environment and IT unite stragically onto the Network. The problem for the air pollution in the office or the indoor except a specific working area is the continuously issue since the human beings have lived in the dwelling facilities. Measures for that problem are urgently needed. It's possible to solve for the freshair of outside with enough ventilation but that is the awkward situation to be managed by person. This study is the system engineering to management for indoor air condition under the sensor network. And research for efficiently manage an option.

  • PDF

Clinical Effectiveness of High-Flow Nasal Cannula in Hypoxaemic Patients during Bronchoscopic Procedures

  • Chung, Sang Mi;Choi, Ju Whan;Lee, Young Seok;Choi, Jong Hyun;Oh, Jee Youn;Min, Kyung Hoon;Hur, Gyu Young;Lee, Sung Yong;Shim, Jae Jeong;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.81-85
    • /
    • 2019
  • Background: Bronchoscopy is a useful diagnostic and therapeutic tool. However, the clinical use of high-flow nasal cannula (HFNC) in adults with acute respiratory failure for diagnostic and invasive procedures has not been well evaluated. We present our experiences of well-tolerated diagnostic bronchoscopy as well as cases of improved saturation in hypoxaemic patients after a therapeutic bronchoscopic procedure. Methods: We retrospectively reviewed data of hypoxaemic patients who had undergone bronchoscopy for diagnostic or therapeutic purposes from October 2015 to February 2017. Results: Ten patients (44-75 years of age) were enrolled. The clinical purposes of bronchoscopy were for diagnosis in seven patients and for intervention in three patients. For the diagnoses, we performed bronchoalveolar lavage in six patients. One patient underwent endobronchial ultrasonography with transbronchial needle aspiration of a lymph node to investigate tumour involvement. Patients who underwent bronchoscopy for therapeutic interventions had endobronchial mass or blood clot removal with cryotherapy for bleeding control. The mean saturation ($SpO_2$) of pre-bronchoscopy in room air was 84.1%. The lowest and highest mean saturation with HFNC during the procedure was 95% and 99.4, respectively. The mean saturation in room air post-bronchoscopy was 87.4%, which was 3.3% higher than the mean room air $SpO_2$ pre-bronchoscopy. Seven patients with diagnostic bronchoscopy had no hypoxic event. Three patients with interventional bronchoscopy showed improvement in saturation after the procedure. Bronchoscopy was well tolerated in all 10 cases. Conclusion: This study suggests that the use of HFNC in hypoxaemic patients during diagnostic and therapeutic bronchoscopy procedures has clinical effectiveness.

Underwater Experiment on CSMA/CA Protocol Using Commercial Modems (상용 모뎀 제어를 통한 수중 CSMA/CA 프로토콜 시험)

  • Cho, Junho;Lee, Sang-Kug;Shin, Jungchae;Lee, Tae-Jin;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.457-465
    • /
    • 2014
  • This paper introduces a test bed for communication protocol schemes of underwater acoustic sensor network, and also shows experimental results obtained from the test bed. As a testing protocol, carrier sense multiple access/collision avoidance (CSMA/CA) is evaluated on underwater acoustic channel. A sensor node is equipped with a DSP control board of ATmega2560 and a commercial underwater modem produced by Benthos. The control board not only manipulates a GPS signal to acquire the information of location and time, but also controls the underwater modem to operate according to the procedure designed for a given testing protocol. Whenever any event takes place such as exchanging control/data packets between underwater modems and acquiring location and timing information, each sensor node reports them through radio frequency (RF) air interface to a central station located on the ground. The four kinds of packets for CSMA/CA, RTS(Request To Send), CTS(Clear to Send), DATA, ACK(Acknowledgement) are designed according to the underwater communication environment and are analyzed through the lake experiment from the point of feasibility of CSMA/CA in underwater acoustic communications.

Finite Element Prediction of Temperature Distribution in a Solar Grain Dryer

  • Uluko, H.;Mailutha, J.T.;Kanali, C.L.;Shitanda, D.;Murase, H
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • A need exists to monitor and control the localized high temperatures often experienced in solar grain dryers, which result in grain cracking, reduced germination and loss of cooking quality. A verified finite element model would be a useful to monitor and control the drying process. This study examined the feasibility of the finite element method (FEM) to predict temperature distribution in solar grain dryers. To achieve this, an indirect solar grain dryer system was developed. It consisted of a solar collector, plenum and drying chambers, and an electric fan. The system was used to acquire the necessary input and output data for the finite element model. The input data comprised ambient and plenum chamber temperatures, prevailing wind velocities, thermal conductivities of air, grain and dryer wall, and node locations in the xy-plane. The outputs were temperature at the different nodes, and these were compared with measured values. The ${\pm}5%$ residual error interval employed in the analysis yielded an overall prediction performance level of 83.3% for temperature distribution in the dryer. Satisfactory prediction levels were also attained for the lateral (61.5-96.2%) and vertical (73.1-92.3%) directions of grain drying. These results demonstrate that it is feasible to use a two-dimensional (2-D) finite element model to predict temperature distribution in a grain solar dryer. Consequently, the method offers considerable advantage over experimental approaches as it reduces time requirements and the need for expensive measuring equipment, and it also yields relatively accurate results.

  • PDF

An Efficient Authentication Mechanism in Mobile-IP Network (Mobile-IP망에서의 효율적인 인증 방안)

  • Chung, Sun-Nie;Chae, Ki-Joon;Jang, Jong-Soo;Sohn, Sung-Won
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.321-335
    • /
    • 2001
  • The explosive growth in wireless networking increasingly urges the demand to support mobility within the Internet which is what Mobile-IP aims to provide. Because the transmission of signals through open-air s easy to be attacked, it is important to provide secure transmission for mobile users and make them responsible for what they have done in networks. Although IETF provides a secret-key based security mechanism, those mechanisms suffer from scalability, efficiency and non-repudiation service problem. The proposed mechanism uses public-key based authentication optimizing the performance. It includes non-repudiation service on the side of mobile for airtight security in wireless network. The simulation results show that the proposed authentication reduces the total registration time. It especially minimizes the computation cost on the side of the mobile node and solves the power problem. In practice, the proposed authentication is feasible with reasonable performance and security service in macro mobility that Mobile-IP is intended to solve.

  • PDF

A Study of Air Pollution Monitoring System using Gossiping Route Protocol in wireless Sensor Network (Gossiping Route Protocol을 이용한 공기오염감지시스템에 관한 연구)

  • Park, Yong-Man;Kim, Hie-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu;Ayurzana, Odgerel;Kwon, Jong-Won;Koo, Sang-Jun;Oh, Shi-Hwan;Kim, Dong-Ki;Jo, Ik-Kyun;Park, Jeong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.485-486
    • /
    • 2007
  • Wireless Sensor Networking is state of the art technology that has a wide range of potential applications. Sensor network generally consists of a large number of distributed nodes that organize themselves into a multi-hop wireless network. Each node has one or more sensors, embedded processors and low-power radios, and is normally battery operated because of small size. In this paper wireless sensor networking technology applies to the environment monitoring system in the underground. This system can monitor a pollution level of the underground in realtime for keeping up a comfortable environment.

  • PDF

The Analysis of Acoustic Waves generated by a TA(ThermoAcoustic) Laser Pair (열음향(Thermoacoustic) 레이저의 음향파 특성 분석)

  • Oh, Seung-Jin;Chen, Kuan;Lee, Yoon-Joon;Shin, Sang-Woong;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • Sound waves and acoustic energy generated by two identical TA (ThermoAcoustic) lasers were analyzed and studied. One end of the ceramic stack was heated by a thin NiCr wire wound around that end. The other end of the stack was cooled by natural convection of atmospheric air. The wavelength of the sound waves generated by a single TA laser was four times the tube length and the amplitude of the waves increased with the heating rate. SPL (SoundPressure Level) meters and microphones were employed to measure and study the sound waves at different distances from the glass tube opening and at the focusing point of the TA laser pair for different laser position arrangements. The sound waves of the two TA lasers at the focusing point were found to be almost 180 degrees out of phase when the openings of the two lasers were very close to each other and the angle between the laser axes was small. When the two TA lasers were placed far apart, the sound wave amplitudes and the phase difference between the two laser outputs varied periodically with time. The frequencies of the sound waves changed when the openings of the two TA lasers were in close vicinity and the angle between the laser axes exceeded a certain value. In this case, the glass tube opening was no longer a pressure anti-node and the wavelength of the fundamental mode was not equal to four times the tube length.

The Characterization of V Based Self-Forming Barriers on Low-k Samples with or Without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.214.2-214.2
    • /
    • 2013
  • Device performance for the 45 and 32 nm node CMOS technology requires the integration of ultralow-k materials. To lower the dielectric constant for PECVD and spin-on materials, partial replacement of the solid network with air (k=1.01) appears to be more intuitive and direct option. This can be achieved introducting of second "labile" phase during depositoin that is removed during a subsequent UV curing and annealing step. Besides, with shrinking line dimensions the resistivity of barrier films cannot meet the International Technology Roadmap for Semiconductors (ITRS) requirements. To solve this issue self-forming diffusion barriers have drawn attention for great potential technique in meeting all ITRS requirments. In this present work, we report a Cu-V alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between V-based interlayer on low-k dielectric with UV curing and interlayer on low-k dielectric without UV curing, thermal stability was measured with various heat treatment temperature. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the V based self-formed barriers after annealing were strongly dominated by the O concentration in the dielectric layers.

  • PDF

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

A Study on the Application of Medical Compression Arm Sleeves Using a MRT(Moisture Responded Transformable) Fibers (MRT(Moisture Responded Transformable)섬유의 의료용 압박소매 적용에 관한 연구)

  • Cho, Daehyun;Jung, Taedu;Park, Eunhee;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, the application of a medical compression sleeve of Moisture Responded Transformable(MRT) fibers to the treatment of lymphedema after surgery in breast cancer patients was investigated. MRT fibers were manufactured with PET and Nylon6 bi-component cross-section yarns, and compression sleeves of sleeves 1, 2, 3, and 4 were knitted in order of size, and then the physical properties and clinical tests were evaluated. As a result, the pressure of compression sleeve in wrinkle was the lowest in sleeve 1 with 3.81 kPa, and the highest in sleeve 4 with 5.22 kPa. Elastic recovery rate is that all parts except the top of the sleeve 1 exhibited 100%. The air permeability was good at 12.1 ~ 16.1 cm3/cm2/sec, and peeling was also comparatively excellent as grade 3. In addition, the weight of the compression sleeves 1, 2, and 3 decreased as 18.3 ~ 23.0 g/m2 depend on size, while the compared sample was heavier with 17.39 ~ 32.61 g/m2. In lymphoscintigraphy test, it was confirmed that the function of remaining lymph node was good in all patients. Although there were no differences between samples in skin irritation and tightness in wearing comfort, the manufactured sleeves showed better fit, lightness, fashion and breathability than the comparable sleeves.