• Title/Summary/Keyword: Air Navigation

Search Result 502, Processing Time 0.032 seconds

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.

A Study on Improvement of International Standard Establishment for New CNS/ATM Systems (New CNS/ATM시스템 국제기준 제정방식의 개선에 관한 고찰)

  • Park, Hyeong-Taek
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 2011
  • In order to ensure the safety, regularity and efficiency of air transportation, ICAO has established the international standards for air navigation systems since 1940s. In 1991, ICAO announced the concept of New CNS/ATM systems and recommended States to carry out the development of the sub systems as well as propose the standards due to many problems caused by service limitations and considerable errors from the conventional systems. As a result, international standards for 21 systems have been established. However, many problems have also been raised. In this paper the problems on new international standard establishment are analyzed and the measures to cure them are suggested.

Performance Comparisons between Command to Line-of-Sight Guidance Law and Proportional Navigation Guidance Law in Short Range Surface-to-Air Missile (단거리 지대공 유도무기에서의 시선지령식 유도법칙과 비례항법 유도법칙의 성능비교)

  • Lee, Yeon-Seok;Liu, Yue-Huan;Kim, Yang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • In this paper, a performance comparison between CLOS(Command to Line-of-Sight) guidance law and PN(Proportional Navigation) guidance law is made, based on a short range surface-to-air missile simulation program called KNUCLOS. This simulation program has a full nonlinear aerodynamic missile model, a tracker model for missile and target, and target model. According to the simulation results, the PN guidance law has a better performance than CLOS guidance law under various target speed.

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.

On Narrowband Interference Suppression in OFDM-based Systems with CDMA and Weighted-type Fractional Fourier Transform Domain Preprocessing

  • Liang, Yuan;Da, Xinyu;Wang, Shu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5377-5391
    • /
    • 2017
  • In this paper, we propose a new scheme to suppress the narrowband interference (NBI) in OFDM-based systems. The scheme utilizes code division multiple access (CDMA) and weighted-type fractional Fourier transform (WFRFT) domain preprocessing technologies. Through setting the WFRFT order, the scheme can switch into a single carrier (SC) or a multi-carrier (MC) frequency division multiple access block transmission system. The residual NBI can be eliminated to the maximum extent when the WFRFT order is selected properly. Final simulation results show that the proposed system can outperform MC and SC with CDMA and frequency domain preprocessing in terms of the narrowband interference suppression.

Implementation of Distributed Health-aware Bicycle System for Making Real-time Air-pollution Map (실시간 대기오염 지도 작성을 위한 분산형 건강인지 자전거 시스템 구현)

  • Cho, Joongjae;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents an environmental navigation system which provides a guidance to the users of smart bicycle for a pollution-free route during their travel. The smart bicycle operates as a sensor node being composed of a distributed wireless sensor network over the whole urban area. Several environmental sensors measuring the amount of dust, CO, $CO_2$, $NO_2$ in the air are built into the smart bicycle to estimate the level of air pollution in the located area. Each smart bicycle sends/receives the measured sensor data and the city pollution map to/from the centralized server, which leads the bike-riders to a healthy route by providing the environmental navigation information. The proposed idea and its implementation give a useful insight on various application services with the distributed smart bicycles.

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF