• 제목/요약/키워드: Air Movement

검색결과 513건 처리시간 0.029초

Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System (수치해석을 이용한 바닥공조 시스템의 공기환경 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Lee, Won-Keun;Moon, Ki-Sun;Kim, Jongryul;Lee, Kwang-ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제12권4호
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

A Analysis of Freight Volume and Freight Truck Flows for Efficient Urban Goods Movement at Incheon City (인천시의 효율적인 도시물류정비를 위한 화물물동량 및 화물차의 유동특성분석)

  • Yun, Jeong Mi;Park, Sang Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제8권2호
    • /
    • pp.166-174
    • /
    • 2005
  • Plan of Logistics facility and Management of Freight trucks need for Efficient Improvement of Urban Goods Movement. For this, it need to clear flow pattern of Freight volumes and Freight trucks on urban space. Therefor, The purpose of this study is to clear space flow pattern of Freight volumes and Freight trucks as base data for Plan of Urban Goods Movement on Incheon city. Incheon city is selected because it is at sea & air ports and carries out various Activity of Urban Goods Movement. As the result of this study, it understands and analyzes Characteristic on flow pattern of Freight volumes and Freight trucks. Through this study, we'll expect that this results could be contributed in the understand of actual conditions of Freight volume and freight trucks and the basic data for Improvement of urban goods movement and the management policy of freight trucks in urban goods movement.

  • PDF

A Geothermal Model of Pit Area Using Computational Fluid Dynamics (CFD를 이용한 피트의 지중열 모델 구축에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo, Sung-Keun;Lee, Seung-Hee;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.962-966
    • /
    • 2004
  • Suction transfer system with air suctioning is widely used and continuously developed in production automation. Air suctioning has some drawbacks in use. To generate vacuum in the suction cup with air suctioning, complex of mechanical component like as air compressor, air tube, air value is need, and it needs continuous air supply. And if the failure of the suction in a cup in the multi-suction cup system which is generally used occurs then the suctions of all of the cup will be fail. To overcome these drawbacks, new suction mechanism which uses permanent magnet for the movement of the suction cup is proposed. The proposed mechanism activates each suction cup separately, so the air leakage of a cup is not critical. The proposed suction system wasdesigned and fabricated in real world. With some experiments, the usability and performance of the suction mechanism was proved. The strong points of the proposed suction mechanism are simple structure, high energy efficiency, and discrete energy supply.

  • PDF

Effect of Atmospheric Pressure Difference with Altitude on the Induced Airflow Velocity in a Vertical Closed Conduit (수직 공간 내에서 고도변화에 따른 기압차로 인한 기류현상 예측에 관한 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제21권7호
    • /
    • pp.409-416
    • /
    • 2009
  • On 21st century, global warming is the most serious environmental problem threatening the existence of lives on the earth. One of the serious reasons of this nature phenomena was due to the greenhouse effect by carbon dioxide mainly produced with the combustion process of hydro-carbon fuel. and it is mostly produced. In the high oil prices age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating large percentage whole building loads, and are regarding as the primary target of energy efficiency. The purpose of this research is on the obtaining of the renewable energy source in the skyscrape buildings in the metropolitan area. The air movement is happens due to the atmospheric pressure differences in the air. Due to this simple physical theory, it is easily expected to obtain the useful renewable nature energy through the high -raised vertical air stack installed in a tall building. However, there is one problem that should be resolved which is called air-hole effect in the sky -scrape buildings.

Evaluation of Indoor Thermal Comfort for Ceiling Type System Air-Conditioner with Various Discharge Angles (천장형 시스템 에어컨의 토출방향 변화에 따른 실내 열쾌적성 평가)

  • Lee, Jin-Hyung;Kim, You-Jae;Choi, Weon-Seok;Park, Sung-Kwan;Youn, Baek;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1180-1185
    • /
    • 2006
  • Modern people spend most of time at indoor space, such as office or classroom. Especially, occupants are exposed to the airtight indoor air quality (IAQ) for a long time, At present, many studies on the air-conditioning systems are more focused on the individual thermal comfort than the thermal efficiency due to increase of the concern of health. There are several factors which are influenced thermal comfort, such as temperature, humidity, convection and air movement, etc. Also, the individual factor, such as age, gender, Physical constitution and habit, should be considered. The 4-way cassette type air conditioner is known to bring out better performance about thermal comfort than the traditional one. This study is performed on the higher ceiling environment than the common buildings or classrooms. Also, this study analyzed on the Indoor thermal comfort by diffusing direction of 4-way cassette air conditioner with various discharge angles, $45^{\circ},\;50^{\circ},\;55^{\circ}$ and $60^{\circ}$. Using a commercial code, FLUENT, three-dimensional transient air thermal flow fields are calculated with appropriate wall boundary conditions and standard $k-{\epsilon}$ turbulence model. Results of velocity and temperature distributions are graphically depicted with various discharge angles.

  • PDF

A Study on the Indoor Environment of school classrooms in Seoul area (서울지역 학교 교실의 실내환경 조사연구)

  • 최한영
    • Journal of environmental and Sanitary engineering
    • /
    • 제18권2호
    • /
    • pp.67-74
    • /
    • 2003
  • In 15 schools where were chosen each location (East, West, South, North, Central) of Seoul area, 9 items were measured such as thermo circumstance(temperature, relative humidity, air current, intensity of illumination) particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide being based on the school indoor environment standard. It was showed that indoor temperature, relative humidity and air movement were suitable in comparison with school indoor environment standard. Intensity of illumination was suitable in comparison with all schools, only exception 2 schools. In all investigated schools were adequate for carbon monoxide, sulfur dioxide and nitrogen dioxide, in which each indoor environment standard (10ppw, 0.25ppm/hr, 0.15ppm/hr), but in 5 schools the carbon dioxide were exceeded for standard limit 1,000ppm of Korea. Indoor concentration of dust(PM-10) induced from respiration dust the standard of Korea ($150{\mu}g/m^3$) at all schools.

Pressure and temperature change in air cylinders in charged or discharged case

  • Takeuchi, Masaaki;Kagawa, Toshiharu;Nomura, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.298-301
    • /
    • 1993
  • In pneumatic systems the temperature changes during operation owing to air compression or expansion, friction of air movement and friction between solid interface. The temperature change usually ha undesirable influence on process. To attain higher quality of pneumatics, studies in thermo-fluid dynamics is needed. This paper presents experimental results anti theoretical analysis on the temperature change by air charge and discharge to cylinders, which has no piston yet. The temperature increase by charge shows a strong, dependence on axial location along the cylinder, which is proved in theoretical analysis. The temperature decreases by discharge shows rather uniform in the cylinder, which is also proved by theory.

  • PDF

Experimental study on smoke-logging phenomenon caused by sprinklers during a compartment fire (구획 화재시 스프링클러에 의한 스모크-로깅현상에 관한 실험적연구)

  • Kwon, Young-Jin;Yoon, Ung-Gi;Seo, Dong-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.121-122
    • /
    • 2014
  • This study contemplated the descending air current from the smoke layers related to the smoke logging phenomenon in the sprinkler applied design for effective evacuation safety design. As a result, database on the average particle diameter, particle velocity and distribution of sprinkling was obtained and the relationship between the water amount and particle diameter was obtained. Also, in relation to descending air current, the movement of smoke layer to the bottom at the descending air current velocity of 0.6m/s was observed and stable descending air current was observed in existence of fire source over 100kW in size.

  • PDF

Comparison of pollutant removal efficiency according to the locations of the supply and exhaust (격리병실내 급배기구 위치에 따른 오염물 제거효율 비교)

  • Won, An-Na
    • Journal of Urban Science
    • /
    • 제9권2호
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.