• Title/Summary/Keyword: Air Mount

Search Result 65, Processing Time 0.025 seconds

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

The Effect of Flow Patterns with Polymer Additivies From Two Phase Flow at Vertical up Ward in Circular Tube (원관내 수직상향 2상유동에서 고분자물질이 유동양식에 미치는 영향)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.505-514
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure void fraction and channel geometry. We classify the flow pattern by measuring the output signal of the conductivity probe. under the classified flow pattern we mount a visualization equipment on the test section and take pictures. We vary the concentration of pure solvent and polymer to measure local void fraction. We know that the maximum point position of local void fraction distribution move from the center of the pipe to the wall of the pipe as JSL increase when JSA is constant in two phase flow. But we find that the maximum point position of local void friction move from the wal of the pipe to the center of the pipe when polymer concentration increase.

  • PDF

Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

Estimation of Characteristics Treatment for Food Waste with Blast Volume and Preheating of Air using Bio-Drying Process (Bio-drying 공법 활용 공기 투입 및 예열에 따른 음식물류 폐기물 분해 특성 평가)

  • Park, Seyong;Lee, Wonbea
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • In this study, the efficiency of treatment of moisture and organic matter in food waste was analyzed according to the air blast volume and preheating using the bio-drying method. Te mount of air blast volume and preheating were determined by the evaluation of temperature and CO2 during food waste treatment using the bio-drying method. As a results, the increase in the air blast volume increased the moisture removal efficiency and removal rate, but, lowered the temperature inside the bio-drying by the decease in microbial activity. In order to maintain the activity of microorganisms, it was estimated that it was necessary to inject an appropriate air blast rate according th the properties of the food waste. In this study, the injection of air blast volume at 15L/min was optimal. It was evaluated that the organic matter and water removal rates according to the presence or absence of air preheating, the organic matter removal rate and water removal rate increased by 3-5% when air preheating was not performed. Also, there was no internal aggregation caused by the generation of condensate inside the bio-drying. Therefore, for effective bio-drying of food waste, it is necessary to maintain an appropriate air blast volume to maintain microbial activity, and it is considered that injection through preheating of air is required.

Development of CanSat System With 3D Rendering and Real-time Object Detection Functions (3D 렌더링 및 실시간 물체 검출 기능 탑재 캔위성 시스템 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Yoo, Seunghoon;Kim, Songhyon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.671-680
    • /
    • 2021
  • This paper deals with the contents of designing and producing reconnaissance hardware and software, and verifying the functions after being installed on the CanSat platform and ground stations. The main reconnaissance mission is largely composed of two things: terrain search that renders the surrounding terrain in 3D using radar, GPS, and IMU sensors, and real-time detection of major objects through optical camera image analysis. In addition, data analysis efficiency was improved through GUI software to enhance the completeness of the CanSat system. Specifically, software that can check terrain information and object detection information in real time at the ground station was produced, and mission failure was prevented through abnormal packet exception processing and system initialization functions. Communication through LTE and AWS server was used as the main channel, and ZigBee was used as the auxiliary channel. The completed CanSat was tested for air fall using a rocket launch method and a drone mount method. In experimental results, the terrain search and object detection performance was excellent, and all the results were processed in real-time and then successfully displayed on the ground station software.

Retrieval of Nighttime Aerosol Optical Thickness from Star Photometry (별 측광을 통한 야간 에어로졸의 광학적 두께 산출)

  • Oh, Young-Lok
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.521-528
    • /
    • 2015
  • In this study star photometry was applied to retrieve aerosol optical thickness (AOT) at night. The star photometry system consisted of small refractor, optical filters, CCD camera, and driving mount and was located in Suwon. The calibration constants were retrieved from the astronomical Langley method but standard deviations of these were more than 10% of the mean values. After the calibration the nighttime AOT was retrieved and cloud-screened in clear six days from 25 Nov. 2014 to 17 Jan. 2015. To estimate the quality of the measurements the nighttime AOT was combined with daytime AOT retrieved from sky-radiometer that was located in Seoul and 17 km away from the star photometry system. In spite of the uncertainty of the calibration constants and the spatial difference of two observation systems, the temporal changes of the nighttime AOT coincided with the daytime. The nighttime ${\AA}ngstr{\ddot{o}}m$ exponent was about 20% lower and more variable than the daytime because of the uncertainty of the calibration constants. If the calibration process is more precise, the combination of star and sun or sky photometry system can monitor the air pollution day and night constantly.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

The vibration and noise characteristics analysis of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 소음 특성 분석)

  • Joeng, Han-E;Kim, H.J.;Gu, D.S.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.78-82
    • /
    • 2006
  • Recently, The demands for the reduction of noise generated by transformers have been increasing. Almost all of the noise generated by transformers is a result of magnetostricitive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. As the noise of transformer irritates residents, needs for decreasing the noise of transformer have been arised. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages. Another method of noise reduction is to mount a close-fitting sound insulation panel on the side of a transformer tank. Side plate vibrations of transformer are transmitted to such a sound insulation panel along two paths. In one case, they are transmitted through air by sound pressure and in the other through supporting structures. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet analytically and experimetally.

  • PDF

Robust Frame Design for Battery Exchange-Type Electric Motorcycle (배터리 교환형 전기 이륜차 활성화를 위한 프레임 강건 설계)

  • Kim, Sang-Hyun;Kim, Gaun;Na, Dayul;Park, Jungwoo;Yu, Dahae;Rho, Kwanghyun;Lee, Jaesang;Zu, Seoungdon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.113-118
    • /
    • 2020
  • Recently, eco-friendly electric motorcycles have been considered to replace aging gasoline motorcycles to reduce the amount of suspended fine dust in air. However, existing rechargeable battery-powered electric motorcycles have been found unacceptable by users because of their many limitations, such as long charging time, short travel distance per charge, and low driving speed. To overcome the drawbacks of conventional electric motorcycles, this paper proposes an exchangeable battery-powered electric motorcycle and a new frame shape for housing the exchangeable battery. The proposed frame is similar to that of current electric motorcycles; however, the shape and position of the saddle support, battery, and controller mount section are redesigned. The safety of the presented frame is verified through static and dynamic analyses using ABAQUS. In particular, the dynamic analysis is conducted under the most extreme condition among the various operating situations, thus confirming the robustness of the proposed frame design.

Optimum Design of Liquid Cooling Heat Exchangers and Cooling-Fluid Distributors for a Amplifier Cabinet of Telecommunication Equipment (통신장비용 앰플리파이어 액체냉각장치 및 냉각유체 분배기의 최적설계 및 성능특성)

  • Yun, Rin;Kim, Yong-Chan;Kim, Hyun-Jong;Choi, Jong-Min;Cheon, Deok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Three liquid cooling heat exchangers for cooling of telecommunication equipment were designed and their cooling performances were tested. The liquid cooling heat exchangers had twelve rectangular channels $(5\times3 mm)$ with different flow paths of 1, 4, and 12. Silicon rubber heaters were used to provide heat flux to the test section. Heat input was varied from 75 to 400 W, while flow rate and inlet temperature of working fluid were altered from 1.2 to 4.0 liter/fin and from 15 to 3$30^{\circ}C$, respectively. The 4-path heat exchanger showed lower and more uniform average inner temperatures between heaters and the surface of heat exchanger than those of the others. To obtain optimal distribution of working fluid to each channels of liquid cooling heat exchangers, 2-3-2 and 4-3 type tube distributors were designed, and their distribution performances of working fluid were numerically and experimentally investigated. The distributor of the 2-3-2 type showed superior distribution performance compared with those of the 4-3 type distributor.