• Title/Summary/Keyword: Air Layer

Search Result 1,858, Processing Time 0.031 seconds

Heat transfer performance with different fills as volumetric air receivers for concentrated solar radiative energy (태양 복사에너지 충진재 변화에 따른 고온 태양열 공기식 흡수기의 열전달 성능 해석)

  • Lee, Ju-Han;Kim, Yong;Jeon, Yong-Han;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally, these become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, the apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100 mm, thickness; 1 mm), honeycombs (diameter; 100 mm, thickness; 30 mm) inserted into ceramic tube (inside diameter; 100 mm, outside diameter; 120 mm, length: 1000 mm). To apply heat to the receiver, an electric heater is used. To find out the heat transfer characteristics of the laminated mesh, the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90 mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

Influences of Urban Trees on the Control of the Temperature (도시의 수목이 기온의 조절에 미치는 영향)

  • 김수봉;김해동
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

A Study on Development of Broad-band Electromagnetic Wave Absorber for EMI/EMC (EMI/EMC 대책용 광대역화 전파흡수체의 개발에 관한 연구)

  • Jun, Sang-Yup;Kim, Dong-Il
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.4
    • /
    • pp.13-25
    • /
    • 1991
  • Recently, according to the development of electromagnetic wave technique, more frequent and powerfull wave radiation becomes inevitable and so electromagnetic environments has become worse accordingly. Electromagnetic wave absorber is known the most effective preventive remedy to cope with the EMI/EMC problem. To realize broad-band electromagnetic wave absorber, triple layered structure where an air layer is interposed between a sintered ferrite layer and a ruber ferrite layer was adopted. Computer simulation for optimum design and evaluation of absorption characteristics has been made. The results shows that designed broad-band electromagnetic wave absorber can be useful for EMI/EMC problem, especially reducing TV ghosts in both VHF and UHF bands by additionally an air layer and a thin rubber ferrite layer on the surface of conventional ferrite, without replacing it.

  • PDF

Experimental Study on Measuring the Intermittency in the Transitional Boundary Layer (천이경계층에서의 간헐도 측정에 관한 실험적 연구)

  • 임효재;안재용;백성구;정명균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • An experimental study was performed to investigate the turbulence intermittency measuring methods across the boundary layer in the transition region. A single type hot-wire probe was used to measure instantaneous streamwise velocities in laminar, transitional and turbulent boundary layer To estimate wall shear stresses on the flat plate, near wall mean velocities are applied to the principle of CPM. Distribution of intermittency factor is obtained by dual-slope method and compared to the results of four methods,$\'{u},\;\{U}$, TERA and M-TERA method. In these methods, M-TERA shows a good agreement in the near wall region. However, the result of M-TERA method shows that intermittency factor is underestimated in the outer part and outside of the boundary layer and the dimensional constant of M-TERA method should be changed appropriately depending on measuring point.

Analysis on the Drying Characteristics for the Drying Process of a Thin Film Layer of Sludge (슬러지 박막의 건조과정에 대한 건조 특성 해석)

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1128-1133
    • /
    • 2008
  • Drying process in the thin film layer of sludge with the thickness less than a few millimeters has been investigated using the simple one-dimensional model. Thin film drying is usually used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic surface through which thermal energy is supplied to the layer during drying. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of heating temperature, film thickness, and air velocity on drying has been examined to figure out the drying characteristics of the sludge layer.

  • PDF

Study on the Turbulent Boundary Layer Disturbed by a Triangular Prism near the Wall (벽근방의 3각주에 의하여 교란받는 난류경계층에 관한 연구)

  • Sim, W.G.;Lee, K.J.;Cho, Y.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.161-167
    • /
    • 1991
  • This paper presents the results of some measurement of the fluctuating velocity field in the turbulent boundary layer disturbed by a triangular prism and discusses the discovery of the disturbed boundary layer. A prism of height 8mm was used for experiments. The streamwise location of the prism was fixed at 1200mm downstream from the leading edge and the space between the prism center and the wall was set at three different values, 6, 15 and 33.5mm. The results show that the near-wall region of the disturbed boundary layer recovers original state much more quickly than the outer region. In the case h=6mm the recovery is faster than the other cases. Moreover, it was found that peak of fluctuating velocities moves outwards somewhat rapidly with increasing ${\times}$ mainly due to the turbulent diffusion of the fluctuating velocity.

  • PDF

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Placing Constrained Layer Damping Patches Using Reactive Shearing Structural Intensity in Order to Reduce the Radiated Sound Power of a Air-Conditioner Outdoor Unit (반동 전단 구조 인텐서티 측정에 의한 제진재 적용과 그에 따른 에어컨 실외기 구조 방사 소음 저감)

  • 김규식;강연준;진심원;정인화;이정우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.333-337
    • /
    • 2003
  • The use of reactive shearing structural intensity to place small patches of constrained layer damping material in order to achieve the largest reduction in the radiated sound power of Air-conditioner outdoor unit is described. The normal surface velocity of each panel was measured using a laser doppler vibrometer. Experimental results indicated that patches of constrained layer damping material placed over areas of high reactive structural intensity reduced the radiated sound power significantly more than patches of the same area placed over areas of low reactive structural intensity

  • PDF