• Title/Summary/Keyword: Air Launch System

Search Result 60, Processing Time 0.022 seconds

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level, two stage concept was applied. The first stage of the vehicle is solid rocket-powered and is mounted under the second stage. The second stage is powered by scramjet propulsion system and gas wings. The suggested mission scenario is to deliver 0.2 ton payload to the range of 2,000 km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all steps of designing process was iterated until they was reached.

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.309-317
    • /
    • 2011
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level and Mach number 0, two stage concept was applied. The first stage of the vehicle is rocket-powered and is mounted under the second stage. The second stage is scramjet-powered propulsion system and has wing. The suggested mission scenario is to deliver 0.2 ton payload to the range less of 2000km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all step of designing process was iterated until they were converged.

  • PDF

Development of A CanSat System Applying High Agility Camera and Remote Control Camera (고기동 안정화 카메라 및 원격제어 셀프카메라를 적용한 캔위성 시스템 개발)

  • Kim, Su-Hyeon;Park, Jae-Hyeon;Kim, Hye-In;Bea, Gi-Sung;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.86-96
    • /
    • 2018
  • The High Agility and Remote Control Camera System Can-Satellite ($HA+RC^2S$ CanSat) proposed in this study is a satellite designed by the authors of this work and submitted as an entry in the 2017 CanSat competition in Goheung gun, Jeonnam, Korea. The primary mission of this work is to develop a high agility camera system (HACS) that can obtain high quality images in the air. This objective is achieved by using a tuned mass damper (TMD) to attenuate the residual vibration that occurs immediately after rotating the camera. The secondary objective is to obtain a self-image of CanSat in the air using a remote control self-camera system (RCSS) that is wirelessly controlled using a joystick from a ground station. This paper describes the development process of the $HA+RC^2S$ CanSat, including mission definition, system design, manufacturing, function and performance tests carried out on the ground, and final launch test.

Real-time Parallel Processing Simulator for Modeling Portable Missile System and Performance Analysis (휴대용 유도탄 체계의 모델링과 성능분석을 위한 실시간 병렬처리 시뮬레이터)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.35-45
    • /
    • 2006
  • RIn this paper. we describe real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed according to the design requirements of mathematic model, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer. and graphic user interface program resided in host computer. The real-time computer consists of six TI C-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to use the real-time parallel processing simulator developed here as a performance analysis equipment for rolling missiles, we perform verification test through experimental results in the field.

  • PDF

Analysis of Orbital Deployment for Micro-Satellite Constellation (초소형 위성군 궤도배치 전략 분석)

  • Song, Youngbum;Shin, Jinyoung;Park, Sang-Young;Jeon, Soobin;Song, Sung-Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • As interest in microsatellites increases, research has been actively conducted recently on the performance and use, as well as the orbital design and deployment techniques, for the microsatellite constellations. The purpose of this study was to investigate orbital deployment techniques using thrust and differential atmospheric drag control (DADC) for the Walker-delta constellation. When using thrust, the time and thrust required for orbital deployment vary, depending on the separation speed and direction of the satellite with respect to the launch vehicle. A control strategy to complete the orbital deployment with limited performance of the propulsion system is suggested and it was analyzed. As a result, the relationship between the deployment period and the total thrust consumption was derived. It takes a relatively longer deployment time using differential air drag rather than consuming thrusts. It was verified that the satellites can be deployed only with differential air drag at a general orbit of a microsatellite constellation. The conclusion of this study suggests that the deployment strategy in this paper can be used for the microsatellite constellation.

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

A Study on Means of Compliance for Lightning Protection in the System and Structure of Air Vehicles (비행체 시스템과 구조물의 낙뢰 보호 적합성 입증방법에 관한 고찰)

  • Jeong, Duckyoung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.49-55
    • /
    • 2020
  • The average probability of a lightning strike to transport aircraft operating in airline service has been estimated to be approximately one strike in every year (or one strike per 1,000 through 20,000 flight hours). The important thing is not the probability of a lightning strike to aircraft, but the fact that aircraft is struck by lightning. Therefore, lightning protection design for aircraft should be qualified and compliance with airworthiness standards related to lightning protection must be substantiated in the process of certification. In this paper, I studied means of compliance for lightning protection through analysis of some test cases, including the KC-100 airplane that firstly obtained civil type certificate in Korea. Based on this paper, it will be also necessary to study on the effect of lightning for space launch vehicles.

An Analysis of Functional Requirements of the ASBM Defense Systems (ASBM 방어체계의 시나리오기반 기능요구사항 분석)

  • Lee, Kyoung Haing;Park, Young Han;Baek, Byung Sun;Baek, Sang Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.98-104
    • /
    • 2016
  • This research describes the functional requirements of anti-ship ballistic missile (ASBM) defense systems, which depend on the threat characteristics of the ASBM. Recently, China has carried out a training launch of the DF-21D strategic countermeasures for the placement of Korean terminal high-altitude air defense (THAAD). The ASBM is being used as a primary means of attacking aircraft carriers, using an anti-access/area denial (A2/AD) strategy. Considering the missile technology connection between China and North Korea, there is a very high probability that North Korea already owns an ASBM. From this point of view, work with Aegis operational concepts provided implications for an ASBM threat. Utilizing quality function deployment (QFD) based on the operational concepts, the functional requirement were calculated.

Nutrient Dynamics and Water Quantity of Throughfall and Stemflow in Natural Oak Stands in Korea (우리나라 참나무 천연림에 있어서 임내우의 수량변화 및 양분동태)

  • Jin, Hyun-O;Son, Yo-Whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.61-70
    • /
    • 2007
  • This study was conducted to investigate nutrient dynamics and water quantity of throughfall and stemflow in natural oak stands in Korea. The ratio of the total throughfnll and stemflow to the amount of precipitation varied with locations. It was considered that the ratio was affected not only by the characteristics of tree species but also by regional, weather and other environmental conditions. It was, therefore, necessary to set up a water control system to launch a tending project for natural oak stands. Comparisons of nutrient amount in throughfall among regions reflected regional characteristics. $Ca^{2+},\;Mg^{2+}$ and $K^+$ ions were leached from the canopy and yellow sand accumulation. $Na^+$ and $Cl^-$ were marine-borne. $NO_3^-$ and $SO_4^{2-}$ resulted from dry deposition of air pollutants. Nutrient amount in the stemflow was as low as about 10% of that in the total throughfall and stemflow. The pH of stemflow in natural oak stands in urban areas ranged from 3 to 5. Influx of the acidic stemflow to soil could, in the long term, affect pH in soil solution and nutrient dynamics around root zones.

A Study about the Direction and Responsibility of the National Intelligence Agency to the Cyber Security Issues (사이버 안보에 대한 국가정보기구의 책무와 방향성에 대한 고찰)

  • Han, Hee-Won
    • Korean Security Journal
    • /
    • no.39
    • /
    • pp.319-353
    • /
    • 2014
  • Cyber-based technologies are now ubiquitous around the glob and are emerging as an "instrument of power" in societies, and are becoming more available to a country's opponents, who may use it to attack, degrade, and disrupt communications and the flow of information. The globe-spanning range of cyberspace and no national borders will challenge legal systems and complicate a nation's ability to deter threats and respond to contingencies. Through cyberspace, competitive powers will target industry, academia, government, as well as the military in the air, land, maritime, and space domains of our nations. Enemies in cyberspace will include both states and non-states and will range from the unsophisticated amateur to highly trained professional hackers. In much the same way that airpower transformed the battlefield of World War II, cyberspace has fractured the physical barriers that shield a nation from attacks on its commerce and communication. Cyberthreats to the infrastructure and other assets are a growing concern to policymakers. In 2013 Cyberwarfare was, for the first time, considered a larger threat than Al Qaeda or terrorism, by many U.S. intelligence officials. The new United States military strategy makes explicit that a cyberattack is casus belli just as a traditional act of war. The Economist describes cyberspace as "the fifth domain of warfare and writes that China, Russia, Israel and North Korea. Iran are boasting of having the world's second-largest cyber-army. Entities posing a significant threat to the cybersecurity of critical infrastructure assets include cyberterrorists, cyberspies, cyberthieves, cyberwarriors, and cyberhacktivists. These malefactors may access cyber-based technologies in order to deny service, steal or manipulate data, or use a device to launch an attack against itself or another piece of equipment. However because the Internet offers near-total anonymity, it is difficult to discern the identity, the motives, and the location of an intruder. The scope and enormity of the threats are not just focused to private industry but also to the country's heavily networked critical infrastructure. There are many ongoing efforts in government and industry that focus on making computers, the Internet, and related technologies more secure. As the national intelligence institution's effort, cyber counter-intelligence is measures to identify, penetrate, or neutralize foreign operations that use cyber means as the primary tradecraft methodology, as well as foreign intelligence service collection efforts that use traditional methods to gauge cyber capabilities and intentions. However one of the hardest issues in cyber counterintelligence is the problem of "Attribution". Unlike conventional warfare, figuring out who is behind an attack can be very difficult, even though the Defense Secretary Leon Panetta has claimed that the United States has the capability to trace attacks back to their sources and hold the attackers "accountable". Considering all these cyber security problems, this paper examines closely cyber security issues through the lessons from that of U.S experience. For that purpose I review the arising cyber security issues considering changing global security environments in the 21st century and their implications to the reshaping the government system. For that purpose this study mainly deals with and emphasis the cyber security issues as one of the growing national security threats. This article also reviews what our intelligence and security Agencies should do among the transforming cyber space. At any rate, despite of all hot debates about the various legality and human rights issues derived from the cyber space and intelligence service activity, the national security should be secured. Therefore, this paper suggests that one of the most important and immediate step is to understanding the legal ideology of national security and national intelligence.

  • PDF