• Title/Summary/Keyword: Air Intake

Search Result 599, Processing Time 0.024 seconds

Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector (PEI용 가솔린 인젝터의 비정상 간헐 분무 특성)

  • Kim Beomjun;Lee Jaiho;Cho Daejin;Yoon Suckju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

The Effects of Tumble and Swirl Flow on the Behavior of Liquid/Vapor Phases in a DI Gasoline Engine (직분식 엔진에서 실린더 내 연료의 액.기상 거동에 미치는 텀블과 스월의 영향)

  • 강정중;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2002
  • This present study experimentally investigates the behavior of liquid and vapor phase of fuel mixtures with changing the in-cylinder air motion in an optically accessible engine. The conventional MPI/DOHC engine was modified to gasoline direct injection engine with swirl motion. The images of liquid and vapor phases were captured in the motoring operation condition using exciplex fluorescence method. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution inside of cylinder respectively, In early injection timings $(BTDC\;270^{\circ},\;180^{\circ})$, tumble flow transported most of vapor phase to the lower region and the both sides of cylinder, so vapor phase didn't become uniform distribution up to the half of the compression stroke. In the case of swirl flow, the fuel mixture was confined near the swirl origin in upper region of cylinder. In late injection timings $(BTDC\;90^{\circ})$, tumble flow transported vapor phase to the intake valve and swirl flow to the exhaust valve.

A Study on the Ultra Lean Combustion Characteristics of the BMW N53 GDI Engine (BMW N53 직접분사식 가솔린 엔진의 초희박 연소특성에 관한 연구)

  • Kim, Hong-Suk;Oh, Jin-Woo;Kim, Sung-Dea;Park, Chul-Wong;Lee, Seok-Whan;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Ultra lean combustion with stratified air-fuel mixture is one of the methods that can improve fuel economy of gasoline engines. The aim of this study is to show that how much fuel economy is improved and what are differences in engine control of the ultra lean combustion compared with stoichiometric combustion. In this study, the BMW N53 GDI engine, which is one of ultra lean combustion GDI engines introduced in the market recently, was tested at various engine operating conditions. Results indicated that fuel consumption rates were improved by 11.9~25.8% by the ultra lean combustion compared with stoichiometric combustion. It was also found that multiple fuel injection, multiple spark, early intake valve opening, and large vlave overlap duration were the features of the ultra lean combustion for combustion stability and emission improvement.

A Study on Measurement and Automation Method of Cylinder Head Swirl (실린더 헤드 스월 측정 및 자동화 방법에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2006
  • The swirl ratio of a charge in the cylinder was estimated by calculating the ratio of the rotary speed of charge which could be simulated from the rotary speed of paddle in the swirl measurement apparatus, to the engine speed which could be calculated by measuring intake air flow rate. The automation of the swirl ratio measurement for cylinder head was achieved by controling both valve lift in cylinder head and a suction pressure of surge tank using two step-motors. The number of measurement position for calculating mean swirl ratio was varied by adjusting the interval of valve lift. The mean swirl ratio with varying the number of measurement position showed nearly constant value. Two measurement methods for measuring the swirl ratio were compared, one was to control the suction pressure of the surge tank with PID (proportional, integral, differential) mode with by-pass valve controlled by the step motor and the other did not control the surge tank pressure by fixing the by-pass valve. The difference of the mean swirl ratio between the two measurement methods showed nearly constant value with varying the number of measurement position. This means that the w/o PID control method could be preferred to the PID control method which has been used, due to the simpleness of the swirl measurement.

The Effects of Split-Injection and EGR on the Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 분할분사 및 배기가스 재순환의 효과)

  • Moon Seoksu;Choi Jaejoon;Abo-Serie Essam;Bae Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.144-152
    • /
    • 2006
  • Split injection has been known to reduce total hydrocarbon (THC) emission level and increase engine performance under certain operating conditions 1, 2). Exhaust Gas Recirculation (EGR) is a common technique adopted for nirtric oxides (NOx) reduction by the dilution of intake air, despite a sacrifice of simultaneous increase in THC and decrease in engine performance3). Thus, using split injection with adequate EGR may improve the emission level of UBHC, NOx and the engine performance compared to that of single-injection with or without EGR cases. The purpose of this study is to investigate the engine performance and emission levels at various engine operating conditions and injection methods when it is applied with EGR. The characteristics of single-injection and split-injection were investigated with various engine loads and EGR rates. The engine speed is changed from 800rpm to 1200rpm to investigate how the combustion characteristics are changing with increasing engine speed.

A Study on the Fuel Injection System for Optimizing Reduction of HC Emission (HC저감용 최적 연료분사 시스템에 관한 연구)

  • Lee, K.H.;Lee, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.146-156
    • /
    • 1995
  • Growing international concern about environmental issues in recent years has led to new proposals for strengthening exhaust emission standards and fuel economy requirements throughout the world. The low emission vehicle(LEV) standards drawn up by the California Air Resources Board(CARB) in the U.S.A are noticeably stringent To cope with this regulation, a reduction of HC emission is the most important challenge for the automotive industry because HC emission levels are severer than any other components emission levels. In this paper, the apparatus for visulalizing the wall film flow in a intake manifold and the spark plug with optical fiber for detecting the signal from diffusion flame are developed to mal,e the HC formation mechanism clear. High speed camera system is also used to elucidate the correlation wall film flow and the diffusion flame. Using these methods, the effect of fuel injection systems such as injection direction, spray angle, atomised injection on HC emission levels is investigated. Consequently, the optimal fuel injection conditions for minimizing the wall film flow and reducing the HC emission are found through this research.

  • PDF

A Study on the Degraded Effect of Decocted Youngsunjetongeum over a Period (령선제통음전탕액(靈仙除痛飮煎湯液)의 경시적(經時的) 효능변화(效能變化)에 관(關)한 연구(硏究))

  • Choi, Young-Bong;Lim, Deog-Bin;Lee, Young-Jong
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.410-418
    • /
    • 1998
  • From the ancient times, herbs, animals and minerals were used as natural medicine to cure human disease in diverse ways. One of the representative forms in oral intake is decoction. But medicinal decoction degenerates as time passes just as all foods do by the environmental factors, such as micro-organism, enzyme, light and the air. Nowadays, as medicinal decoctions are kept in bottles and retort pouch for longtime, some standard data for preservation is necessary. In order to measure the standard statistics for safe preservation, Youngsunjetongeum used to treat rheumatism, and gout 'were used. According to this experiment which measured pH, specific gravity, analgesic effect and anti-inflammatory effect, the results were as follows: 1. No remarkable change was found in pH and in the specific gravity of decoction. 2. As for the analgesic effect induced by acetic acid in mice, no remarkable decrease in its medicinal efficacy was found, until the 9th day, but it showed in its medicinal efficacy from the 11th day. 3. As for the resultant anti-inflammatory effect caused by vascular permeability, induced by carrageenin and acetic acid, no remarkable decrease in its medicinal efficacy was found until the 9th day, but showed decrease in its medicinal efficacy from 11th day. In conclusion, keeping the natural medicinal decoction more than 9 days should be avoided.

  • PDF

Technical Review and Analysis of Ramjet/Scramjet Technology II. Scramjet and Combined Cycle Engine (램제트/스크램제트의 기술동향과 기술분석 II. 스크램제트 및 복합엔진)

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • A technical analysis of current scramjet and combined-cycle engine is presented. Substantial research has been pursued to characterize the operation mechanism of scramjet propulsion, especially in the areas of flame stabilization and system integration, dramatically over the years in support of both military and space access application. Major technology that had significant impact on the maturation of scramjet propulsion technology are dual combustion ramjet, dual mode ramjet, and combined cycle engine to cover a typical wide rage of flight, up to flight Mach number 10. Notable are the fundamental and practical techniques, for instance, scram propulsion itself, thermal relaxation and protection using endothermic fuel and/or CSiC composit materials, and design/manufacture of movable intake and nozzle, to realize high speed propulsion system in near future.

Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine (가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향)

  • Yoo, Dong-Hoon;Nishida, Osami;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.

An Experimental Study on Exhaust Emission in a Gasoline Engine Using PDA and Spark Plug Location (점화플러그 삽입위치와 PDA 밸브를 이용한 가솔린엔진의 배출가스에 대한 실험적 연구)

  • Kim Dae-Yeol;Kim Dae-Yeol;Kim Yang-Sul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-40
    • /
    • 2005
  • The purpose of this study is to investigate variation of spark plug protrusion and PDA valve on the exhaust emission in a gasoline engine. Swirl is one of the important parameters that affects the characteristics of combustion. PDA valve has been developed to satisfy requirements of sufficient swirl generation for improving the combustion and reducing of emission level. Also, especially, the variation of spark plug protrusion have an important effect to the early flame propagative process. This is largely due to the high flame speed by short of flame propagation distance. So, this is forced that injection timing, spark timing and intake air motion govern the stable combustion. As a result, using two combustion chamber, without charge of engine specification and the variable spark plug location and PDA valve could be reduced exhaust gas at a part load engine conditions(1500rpm imep 3.9bar, 2000rpm imep 3.2bar, 2400rpm imep 3.9bar).