• Title/Summary/Keyword: Air Hygiene

Search Result 411, Processing Time 0.026 seconds

Gas Chromatographic Analysis of TDI, MDI and HDI Using 2-Chlorobenzyl Alcohol and 2,4-Dichlorobenzyl Alcohol Derivatives (2-클로로벤질 알코올 및 2,4-디클로로벤질 알코올 유도체를 이용한 TDI, MDI 및 HDI의 가스크로마토그래피 분석)

  • Yun, Ju-Song;Park, Jun-Ho;Lee, Kang-Myoung;Choi, Hong-Soon;Cho, Young-Bong;Koh, Sang-Baek;Cha, Bong-Suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.222-232
    • /
    • 2006
  • Objectives: The objective of this study was to propose the total isocyanate analytical method which involves derivation of 2,4-toluene diisocyanate(2,4-TDI), 2,6-toluene diisocyanate(2,6-TDI), 4,4'-methylenediphenyl diisocyanate(4,4'-MDI) and 1,6-hexamethylene diisocyanate(1,6-HDI) using 2-chlorobenzyl alcohol(2-CBA) or 2,4-dichlorobenzyl alcohol(2,4-DCBA), and analyzing of hydrolysate of the synthesized urethane with the gas chromatography(GC)/flame ionization detector(FID), GC/pulsed discharge ionization detector-electron capture detector(PD-ECD) and GC/mass selective detector(MSD). Methods: Urethanes were synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI to 2-CBA or 2,4-DCBA. Urethanes was verified by TLC, HPLC/UVD and GC/MSD. For field application, the most suitable condition that 2-CBA coated in glass fiber filter removed completely and urethanes were not removed was searched. 2-CBA generated from hydrolysis of urethanes according to hydrolysis conditions. Diisocyanates were collected on field air and analyzed. Results: Urethanes which were white and solid phase synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI, 1,6-HDI and 2-CBA or 2,4-DCBA. And urethanes were verified by TLC, HPLC/UVD and GC/MSD. The most suitable conditions to remove 2-CBA coated in glass fiber filter were $87^{\circ}C$ and 20 mmHg and urethanes were not removed under same condition. Hydrolysis yields of urethanes were 99 % to 111 %. 2-CBA, the hydrolysate of urethanes was analyzed by GC/FID, GC/PD-ECD and GC/MSD. Conclusions: Simultaneous analysis of 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI deriving with 2-CBA and 2,4-DCBA, along with a total isocyanate analysis, was feasible with GC/FID, GC/PD-ECD and GC/MSD. This result will be a guide of further study on total isocyanate analysis.

Field Study of Emission Characteristics of Ammonia and Hydrogen Sulfide by Pig Building Types (돈사 작업장 유형에 따른 암모니아와 황화수소의 실내농도 및 발생량에 관한 현장 조사)

  • Kim, Ki Youn;Park, Jae Beom;Kim, Chi-Nyon;Lee, Kyung Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • The principal aim of this field study was to determine the concentrations and emissions of gaseous contaminants such as ammonia and hydrogen sulfide in the different types of pig buildings in Korea and allow objective comparison between Korea and the other countries in terms of pig housing types. This field study was performed from May to June and from September to October in 2002. Pig buildings investigated in this research were selected in terms of three criteria; manure removal system, ventilation mode and growth stage of pig. Measurements of concentration and emission of ammonia and hydrogen sulfide in the pig buildings were done in 5 housing types and the visited farms were 15 sites per each housing type. Concentrations of ammonia and hydrogen sulfide were measured at three locations of the central alley in the pig building and emission rates of them were estimated by multiplying the average concentration($mg/m^3$) measured near the air outlet by the mean ventilation rate($m^3/h$) and expressed either per pig of liveweight 75kg(mg/h/pig) or per area($mg/h/m^2$). Concentrations of ammonia and hydrogen sulfide in the pig buildings were averaged to 7.5 ppm and 286.5 ppb and ranged from 0.8 to 21.4 ppm and from 45.8 to 1,235 ppb, respectively. The highest concentrations of ammonia and hydrogen sulfide were found in the mechanically ventilated buildings with slats; 12.1 ppm and 612.8 ppb, while the lowest concentrations of ammonia and hydrogen sulfide were found in the pig buildings with deep-litter bed system(2.2 ppm) and the naturally ventilated pig buildings with manure removal system by scraper(115.2 ppb), respectively(p<0.05). All the pig buildings were investigated not to exceed the threshold limit values(TLVs) of ammonia(25 ppm) and hydrogen sulfide(10 ppm). The mean emissions of ammonia and hydrogen sulfide per pig(75kg in terms of liveweight) and area($m^2$) from pig buildings were 250.2 mg/h/pig and 37.8 mg/h/pig and $336.3mg/h/m^2$ and $50.9mg/h/m^2$, respectively. The pig buildings with deep-litter bed system showed the lowest emissions of ammonia and hydrogen sulfide(p<0.05). However, the emissions of ammonia and hydrogen sulfide from the other pig buildings were not significantly different(p>0.05). Concentrations and emissions of ammonia and hydrogen sulfide were relatively higher in the pig buildings managed with deep-pit manure system with slats and mechanical ventilation mode than the different pig housing types. In order to prevent pig farm workers from adverse health effect caused by exposure to ammonia and hydrogen sulfide in pig buildings, they should wear the respirators during shift and be educated sustainably for the guideline related to occupational safety.

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Field Comparison of Korean Diffusive Sampler and Charcoal Tube Methods for Determination of Organic Vapors (공기중 유기용제 농도 측정에 있어서 국산 확산포집기와 활성탄관의 비교연구)

  • Cho, Sook Ja;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.33-48
    • /
    • 1997
  • Korean diffusive sampler (KDS) and charcoal tube (CT) were used for sampling n-hexane, trichloroethylene and toluene in air KDS was made by Department of Environmental Health, SNU-SPH in 1995. Surveys were conducted at ten industrial plants with organic solvents. The relationship between two sampling methods was examined by linear regression analysis, and concentrations by two sampling methods were compared using paired t-test. The results are as follows: 1. The geometric means by CT and KDS methods were 3.26ppm and 3.32ppm for n-hexane, 5.07ppm and 6.34ppm for toluene, and 7.18ppm and 7.90ppm for toluene, respectively. There was no significant difference between results by CT and KDS methods in three organic vapors (p>0.05). When linear regression analysis was performed, two sampling methods were highly related ; correlation coefficients were 0.98, 0.90 and 0.96 for n-hexane, toluene and trichloroethylene, respectively. 2. Airborne concentrations of n-hexane (n=21) were below 0.5 TLV level. The GM by two methods were almost same (3.09 ppm). And there was no significant difference between results by two methods (p>0.05). 3. Since toluene and trichloroethylene concentrations showed several levels, appropriate sampling rates were applied for each level. The GM of toluene concentrations by two methods at 0.5 TLV level were 3.75ppm and 5.48ppm. The KDS method overestimated the toluene concentrations at 0.5 TLV level (p<0.05). The GM values of toluene concentrations at 1 TLV level were 31.80ppm and 25.38ppm and at 2 TLV level were 64.13 ppm and 51.37 ppm. The KDS method underestimated concentration at both level (p<0.05). For trichloroethylene, the GM at 0.5 TLV level were 4.97 ppm and 7.11ppm. The KDS method overestimated the concentration of trichloroethylene (p<0.05). In conclusion, concentrations of three organic vapors measured by CT and KDS were not significantly different and results by two methods were highly related. But at contain concentrations, the levels by method were significantly different. Therefore, it is suggested that sampling rate of KDS should be studied simultaneously using CT method for organic vapors.

  • PDF

A Study on Organic Solvent Measurement Using Diffusive Sampler (확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구)

  • Park, Mi Jin;Yoon, Chung Sik;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Microbiological Evaluation of Chilled Freshes Raw-fish Manufacturers before and after HACCP System Establishment (싱싱회류 생산업체의 HACCP 시스템 구축 전 후의 미생물학적 평가)

  • 박완희;이성학;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.2
    • /
    • pp.74-83
    • /
    • 2004
  • Raw-fish food contains a lot of moisture and is a high-protein food. It is a first-stage processed food taking a lot of manual work. Therefore, it is classified as a PHF food, very liable to cause a bacterial food-poisoning. But its manufacturers are usually small-sized and a systematic sanitation management is difficult to expect. But the manufacturer participating in this study produces chilled fresh raw-fish food. Fish are sliced into two fillets, which are packaged under vacuum, kept and distributed in refrigerators, and sold within a day. It is a newly-developed kind of raw-fish food, and a more improved kind of raw-fish food making possible a systematic sanitation management. The HACCP (Hazard Analysis and Critical Control Point) is a systematic and continuous process-control method which is very efficient for controling food sanitation and reducing the expenses. A new HACCP model has been developed to be applied to a large-sized chilled fresh raw-fish food manufacturer. To ascertain its efficiency, the baterial examination was done to its workplace and products. The significance test was done on its data by "SPSS 12.0 for Window" and "Mann-Whitney U Test". The numbers of bacteria on its final products were significantly different in flatfish and porgy. The number of bacteria tended to decrease in each time-differential sampling (P<.00l). The final food products showed no food-poisoning bacteria in all the time-differential tests and in all the samplings, which proves that the CCP of the HACCP system is under control. After the SSOP program was applied, no pathogenic bacteria were found in the work-place, and the kinds and numbers of bacteria decreased. The numbers of general bacteria and colon bacilli also showed a significant difference from those before the SSOP program in the filleting board (P<.05), in the skinning board (P<.0l), in the neck-removing knife (P<.05), and in the filleting knife (P<.01). The working equipments, periodically disinfected, also showed a significant difference in sanitary conditions (in the dehydrator, P<.05). The number of bacteria found on the food-touching surface was within the standard (below 500/l00 cm$^2$) After the SSOP program was applied, the general bacteria and colon bacilli were not found. The quality of water used in the food processing was also within the standard. The numbers of bacteria falling from the air in the work-place were negligible in all the samplings (<30CFU/l000ι). The staphylococci and fungi were not found.

Efficacy of Aerosolized Natural Antimicrobial and Organic Acids as a Sanitizer against Foodborne Pathogens on Stainless Steel (Stainless steel에 접종된 식중독 미생물에 대한 천연항균제 및 유기산 분무 살균효과)

  • Ha, Su-Jeong;Yang, Seung-Kuk;Park, Hyeon-Ju;Kim, Chung-Hwan;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.336-341
    • /
    • 2011
  • This study was carried out to investigate efficacy of aerosol sanitizer with natural antimicrobial and organic acids against Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The artificially inoculated pathogens on stainless steel coupon were treated with grapefruit seed extract (GFE), acetic acid, citric acid and lactic acid in model cabinet for 5 min. The number of three foodborne pathogens with individual treatment was reduced by 0.34-3.77 log units, treatment with GEF + organic acid was reduced by 1.72-3.89 log units and treatment with GEF + organic acid + alcohol was reduced by 1.46-5.05 log units. By treatment with GEF + lactic acid + alcohol in scale-up model system for 10 min. Populations of E. coli O157:H7, S. Typhimurium and L. monocytogenes were reduced by 3.42, 2.72 and 2.30 log units from the untreated control respectively. From the above result, aerosol sanitizer with natural antimicrobial agents and organic acid can be used as an environmental sanitation method with satisfying the consumer demand on safe food.

A Study of Asbestos Stabilizer Treatment Considering the Actual Environment of Ceiling Materials (실제 환경을 고려한 천장텍스의 석면안정화제 처리 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon;Sun, Yleshik;Park, Whame
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2016
  • Objectives: This study aimed to confirm the optimal processing conditions of the asbestos stabilizer by considering various actual environments at the time of stabilization treatment of the ceiling materials containing asbestos with asbestos stabilizer. Methods: The anti-scattering performances of the asbestos stabilizer were confirmed by considering the method and quantity of the asbestos stabilizer treated, comparing the loss weight by measuring the weight of ceiling materials prior to and after having treated 30, 50, 100, 200, and 400 of stabilizer using the brush and spray. The effects of backside dust and steel frame structure on the performances of the stabilizer was also confirmed by comparing samples with and without the dust on the rear surface removed by wiping the ceiling material specimens and the blinding treatment simulated by using tape. Results: The asbestos stabilization treatment using the brush method in comparison with the use of a spray has reduced stabilizer loss, resulting in better anti-scattering performance. In addition, the stabilizer loss is increased with increasing treatment quantity; as a result, treating a larger quantity of stabilizer does not improve the performance. For the conditions related to ceiling materials, the anti-scattering performance is enhanced by removing the backside dust and spreading the stabilizer evenly on the masking portion by steel frame structures. Conclusions: Based on these results, it is determined that the appropriate choice of the tool used for the treatment of the asbestos stabilizer and the appropriate quantity of asbestos stabilizer were needed at the time of actual stabilization processing of the ceiling materials containing asbestos. Moreover, this study confirmed that preliminary processing and verification of the structure at which the ceiling materials are installed can enhance the effectiveness of prevention of the scattering of asbestos into the air.

Effect of Wa-song(Orostachys japonicus A. Berger) Extract on the Oxidative Stability of Edible Oil During its Heating (식용유지의 가열시 와송 추출물이 산화안정성에 미치는 영향)

  • Lee, Soo-Jung;Shin, Jung-Hye;Seo, Jong-Kwon;Sung, Nak-Ju
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.1
    • /
    • pp.12-18
    • /
    • 2009
  • This experiment was conducted to investigate the effect of wa-song (Orostachys japonicus A. Berger) extracts on the oxidative stability of edible oil. Wa-song was dried from hot air (HWE) and freeze (FWE), and then they were extracted by hot water. The different levels (0.1, 0.5 and 1.0 g/100 mL) of HWE and FWE were added to soybean oil and lard. The chromaticity of edible oils was generally increased with prolonged heating time and HWE was higher than FWE. The anisidine value showed significant increase during heating for 48hrs. After heating for 48 hrs, it was lower than control, except for HWE added sample of 0.5 and 1.0 g/100 mL, FWE added sample of 1.0 g/100 mL. In lard, it was lower in sample added wa-song extract than control. The acid value was not significant by added amount of wa-song. Its value in HWE added sample was lower than FWE, after heating for 48 hrs. POV was lower HWE than FWE, also. After heating for 24 hrs, TBA values in soybean oil containing HWE and FWE added sample was lower than control. In lard, its value in HWE and FWE added sample was lower than control during heating for $12{sim}48\;hrs$. Therefore, those results suggested that HWE has higher antioxidant activity than FWE added sample, and then oxidative stability of HWE in edible oil was more potential for lard during its heating.