• 제목/요약/키워드: Air Flow Geometry

검색결과 226건 처리시간 0.029초

소형 에어리프트 펌프의 성능특성에 관한 연구 (A Study on Performance Characteristics of Small Airlift Pump)

  • 오세경;이강용
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.34-39
    • /
    • 2000
  • Performance data in the literature on air lift pumps have been based primarily on pumps of long length and large diameter (high lift pumps). Since mariculture operations involve pumps of relatively short length and small diameter, performance data are required for efficient operation. To provide such data, an experimental apparatus was designed and fabricated to test all lift pumps from 2.1 to 3.4 cm inside diameter and from 40 to 300 cm in length. Instrumentation was provided to measure water flow rate and air flow rate as well as water temperature, air temperature, and pressure throughout the system. Results from this study correlate well with high lift pump data in that, for a given pump geometry, maximum water flow occurs for a specific air flow rate. Driving the pump with air flows larger or smaller than this optimum flow rate will decrease the pumping rate. The optimum flows are significantly different for low lift pumps compared to high lift pumps. However, the pumping rate for low lift pumps approaches that for high lift pumps with increasing length.

  • PDF

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

전산모델에 의한 응축기내에서의 기체유동현상의 예측 (Prediction of Flow Pattern inside a Power Condenser by Computer Modelling)

  • 설광원;이상용
    • 대한설비공학회지:설비저널
    • /
    • 제17권3호
    • /
    • pp.238-248
    • /
    • 1988
  • The flow pattern inside the power condenser is generally known to be very complicated due to the phase change and turbulence effects as well as the effect of condenser geometry. In the present study, the flow pattern inside the power condenser was numerically simulated with a personal computer. The widely known CHAMPION 2/E/FIX(Concentration, Heat and Momentum Program Instruction Outfit, 2D/Elliptic/Fixed grid) computer code was modified for this purpose. The flow was asssumed to be two-dimensional and steady-state, and the tube bank was considered to be homogeneous porous medium. Simple turbulent diffusion coefficients based on the appropriate experiments were obtained for the computation. Through this analytical approach, the flow pattern could be predicted fairly well. The computational results also show that the location of the air vent plays an important key role in determining the efficiency of the condenser.

  • PDF

A Generalized Correlation and Rating Charts for Mass Flow Rate through Capillary Tubes with Several Alternative Refrigerants

  • Choi Jong Min;Jang Yong Hee;Kim Yongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권4호
    • /
    • pp.192-197
    • /
    • 2004
  • A capillary tube, which is a common expansion device in small sized refrig-eration and air-conditioning systems, should be redesigned properly to establish an optimum operation cycle of a refrigerating system with alternative refrigerants. Based on experimental data for R-22, R-290, and R-407C, an empirical correlation is developed to predict mass flow rate through capillary tubes. Dimensionless parameters are derived from the Buckingham Pi theorem, considering the effects of operating conditions and capillary tube geometry on mass flow rate. Approximately $97\%$ of the present data are correlated within a relative deviation of $\pm\;10\%.$ The present correlation also predicts the data obtained from open literature within $\pm\;15\%.$ In addition, rating charts of refrigerant flow rate for R-12, R-22, R-134a, R-152a, R-407C, R-410A, R-290, and R-600a are developed.

씰리스 실린더 특성 해석에 관한 연구 (Characteristics Analysis of Sealless Cylinders)

  • 서현석;김동수;유찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

씰리스 실린더 모델링 및 시뮬레이션 (Modelling and Simulation of Sealless Cylinders)

  • 김동수;서현석;최병오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1911-1915
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

비접촉 시일의 형상에 관한 누설특성 해석

  • 나병철;전경진;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.176-180
    • /
    • 1997
  • Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Flow is characterized into five categories according to its leakage path. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. This offers a methodological way of enhancement seal design for high speed spindle.

  • PDF

합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구 (Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow)

  • 차경옥;김재근;양회준
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

Exceedance probability as a tool to evaluate the wind environment of urban areas

  • Bady, Mahmoud;Kato, Shinsuke;Ishida, Yoshihiro;Huang, Hong;Takahashi, Takeo
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.455-478
    • /
    • 2008
  • The present study aims to estimate the wind ventilation performance for pedestrian level domains from the air quality point of view. Three typical models of a dense urban area were considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics, which in turn affect the air quality, within the pedestrian domain of a street canyon located within this area. The calculated flow fields were employed to estimate the exceedance probabilities within the study domain using a new approach: air exchange rate within the domain. The study has been applied to nine cities in Japan: Tokyo, Osaka, Sapporo, Niigata, Fukuoka, Nagoya, Sendai, Yokohama, and Kyoto, based on their mean wind velocity data. The results demonstrated that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool during the design stage of inhabited areas for the evaluation of pollutant-removal efficiency by the applied wind. Also, the calculated probabilities demonstrated substantial dependence on both the geometry of building arrays and the wind conditions of the nine cities.

냉동기유가 모세관내의 냉매유량에 미치는 영향 (The Effects of Oil on Refrigerant Flow through Capillary Tubes)

  • 홍기수;황일남;민만기
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.791-801
    • /
    • 2000
  • An experimental study was conducted to analyze the effects of oil on refrigerant flow through adiabatic capillary tubes, and to develop a model for mass flow rates of refrigerant/oil mixture at various capillary tubes and flow conditions. Mass flow rates and the profiles of the pressures and temperatures along the capillary tubes was obtained with the oil concentration of R-22/SUNISO 4GS oil mixture at various test conditions. The flow trends as a function of geometry and flow conditions for pure refrigerant and refrigerant/oil mixture were similar in adiabatic capillary tubes. Mass flow rate of the refrigerant/oil mixture was less than that of pure refrigerant at the same test conditions.

  • PDF