• Title/Summary/Keyword: Air Flow Control

Search Result 1,022, Processing Time 0.024 seconds

Fluid dynamical characteristics of microencapsulated phase change material slurries (미립잠열슬러리의 유체역학적 특성연구)

  • 이효진;이승우;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber (정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성)

  • Lee Kihyung;Lee Changsik;Lee Changhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

High altitude powered lighter-than-air vehicle as remote sensing platform

  • Onda, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1361-1364
    • /
    • 1990
  • In order to tackle global environmental problems such as destruction of the ozone layer or climatic changes due to atmospheric temperature increase, the acquisition of plentiful and precise data is necessary. Therefore, a means of conducting long-lasting high-resolution measurements over broad areas is required. A feasibility study has been made on a high altitude (20km), super-pressured helium-filled PLTA (Powered Ligher-than-Air) vehicle as an ideal platform for environmental observation. It has a long service life and carries a larger payload than an artificial satellite. This PLTA platform uses an electric propulsion system to maintain position in space against wind currents. The thruster is driven by solar power acquired from solar cells. For night use, solar energy is stored in regenerative fuel cells. This study focuses on energy balance and structural analysis of the hull and platform. The platform is capable of conducting high resolution remote sensing as well as having the capability to serve as a telecommunications relay. The platform could replace a number of ground-based telecommunications relay facilities, guaranteeing sufficient radio frequency intensity to secure good quality telecommunication transmittal. The altitude at which the platform resides has the lowest wind flow in the lower stratosphere, and permits viewing from the ground within a 1,000km range. Because this altitude is much lower than that required of an artificial satellite, the measuring resolution is a couple of thousand times higher than with artificial satellites. The platform can also be used to chase typhoons and observe them from their sources in tropical regions.

  • PDF

Prediction of Heat-Up Time of the Glass Plate by IR Heaters in an LCD-Panel Cleaning Process (LCD 패널 세척공정에서 원적외선 히터에 의한 유리기판 승온시간 예측)

  • Kim, Yun-Ho;Ji, Tae-Ho;Kim, Seo-Young;Rhee, Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.526-533
    • /
    • 2006
  • The prediction of heat-up time of an LCD glass plate in LCD glass pre-treatment process has been implemented in the present study. Firstly, the analytical solution for one-dimensional radiation heat transfer from IR heaters to a LCD glass plate is obtained. When the surface temperature of the IR heaters is set at 473 K, the heat-up time of LCD glass to averaged temperature of 383K is 28 seconds. In addition, a three dimensional full CFD analysis using STAR-CD is implemented in an effort to consider the effect of 3-D heat loss through the furnace walls. From the results of the 3-D CFB analysis, the heat-up time increases up to 32.5 seconds under the same conditions. When the IR heater temperature in creases up to 573 K, the heat-up time decreases to 12 seconds for the one-dimensional analytical solution and to 13.5 seconds for the 3-D CFD analysis, respectively.

Experimental study on flame behavior within a porous ceramic burner (다공 세라믹 버너 내부의 화염 거동에 관한 실험)

  • Im, In-Gwon;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 1997
  • Experimental studies on combustion phenomena within a porous ceramic burner are reported. Main interest of the present work is to investigate fundamental flame behaviors and their effects on the burner operation. Due to high thermal capacity of the porous ceramic materials, the response of flame to burning condition changes is slow and thus to have a stabilized flame is quite difficult and takes much time. It is found that the temperature profile obtained at downstream of the flame zone is not much sensitive to the movement of flame and the speed of flame movement is less than 0.1 mm/sec for the conditions tested. With the premixed LPG/air flame imbedded within the porous ceramic burner, stable combustion regions and unstable combustion regions leading to blowoff or flashback phenomena are observed and mapped on flow velocity versus equivalence ratio diagram. For the development of burner operation technique which is more practical and safe, intermittent burning technique, where the fuel or/and air is supplied to the burner intermittently, is proposed as one of the flame control methods for the porous ceramic burner and tested in this study. Through the experiment, it is realized that the proposed method is acceptable in respect to burner performance and give much flexibility in the operation of porous ceramic burner.

Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration (정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험)

  • Hong, Seungkwan;Miller, Frank;Taylor, James
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

Green-infra Strategies for Mitigating Urban Heat Island (도시열섬현상완화를 위한 그린인프라 전략)

  • Park, Chae-Yeon;Lee, Dong-Kun;Kwon, Eu-gene;Her, Min-ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.67-81
    • /
    • 2017
  • Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

Characteristics of Temperature Distribution of Pen for Exhaust Fan of Ventilation System (돈사용 환기팬을 위한 돈사 내 온도 분포 특성)

  • Kim, Hyeon-Tae;Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.155-160
    • /
    • 2014
  • This study was researched for use by data for the improvement of ventilation system of optimum environmental control systems. The ventilation system for windowless swine housing was installed negative pressure system that circular pipe duct for inlet was installed on the ceiling and axial flow fan for exhaust was installed on the sidewall. The temperatures in the pen was measured using infrared thermography camera and thermocouple with data-logger. The temperature measurement points was selected by infrared thermography camera is alley (G), inlet (A), front-upper (B), front-lower (C), rear-upper (D), rear-lower (E), forward fan (F). The temperature measured at those selected points for temperature distribution was $28^{\circ}C$ that was maintained setting temperature in suitably. The temperature deviations of F point and A~E points in windowless swine housing was less then average $0.5^{\circ}C$. The result of air velocity of measured points was suitable to the breeding of pigs.

Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger (Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구)

  • Kim, Sung Woo;Baek, Changhyun;Song, Kang Sub;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.

Analysis of Coal Combustion and Particle Temperature Profiles in a Rotary Kiln for Production of Light-weight Aggregate (경량골재 로타리킬른의 운전최적화를 위한 석탄연소 및 원료입자 승온특성 해석)

  • Park, Jong-Keun;Ryu, Changkook;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Bottom ash from a coal-fired power plant is usually landfilled to a nearby site, which causes a growing environmental concern and increased operating costs. One way of recycling the bottom ash is to produce light-weight aggregate (LWA) using a rotary kiln. This study investigated the temperature profiles of raw LWA particles in a rotary kiln to identify the range of operating conditions appropriate for ideal bloating. For this purpose, a new simulation method was developed to integrate a 1-dimensional model for the bed of LWA particles and the computational fluid dynamics (CFD) for the fuel combustion and gas flow. The temperature of LWA particles was found very sensitive to the changes in the air preheating temperature and excess air ratio. Therefore, an accurate control of the operation parameters was essential to achieve the bloating of LWA particles without excessive sintering or melting.