• Title/Summary/Keyword: Air Flow Control

Search Result 1,022, Processing Time 0.031 seconds

A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1811-1820
    • /
    • 2005
  • Thermo-acoustic instability of methane/ air flames in an industrial gas-turbine combustor is numerically investigated adopting CFD analysis. The combustor has 37 EV burners through which methane and air are mixed and then injected into the chamber. First, steady fuel! air mixing and flow characteristics established by the burner are investigated by numerical analysis with single burner. And then, based on information on the flow data, the burners are modeled numerically via equivalent swirlers, which facilitates the numerical analysis with the whole combustion system including the chamber and numerous burners. Finally, reactive flow fields within the chamber are investigated numerically by unsteady analysis and thereby, spontaneous instability is simulated. Based on the numerical results, scaling analysis is conducted to find out the instability mechanism in the combustor and the passive control method to suppress the instability is proposed and verified numerically.

Numerical Investigation on Wall Flow Control for Preventing Contaminants Deposition inside a Duct (덕트 내 오염물질 퇴적 방지를 위한 벽면유동 제어에 관한 해석적 연구)

  • Lee, Banguk;Lee, Jeekeun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.261-268
    • /
    • 2013
  • Technologies for preventing contaminants deposition are a key issue in a modern duct system. When particulate matters deposit inside the exhaust pipes, which are widely used in the Urea-SCR system to reduce $NO_x$ emission from heavy duty diesel engines, many problems arise associated with increased flow resistance and corrosion. Therefore, the development of the urea deposition avoidance technologies is being treated as an important issue of the Urea-SCR system. An analytical study was carried out to investigate the effects of the wall flow around the mixer with the variation of the mixer housing surrounding and supporting the mixer, which is designed to increase the wall flow and then to reduce droplet deposition. The housing angles and the position of the mixer were changed:angles of $0^{\circ}$, $1^{\circ}$, $2^{\circ}$, and $3^{\circ}$, and mixer positions of 0 L, 0.5 L, and 1 L. The axial velocity distributions, maximum velocity, the half-width, and momentum distribution of the wall flow were investigated to examine the effect of the mixer-housing assembly geometry.

Air Flow Prediction and Experiment by T-Method According to Duct Layout on House Ventilation System (주택환기시스템의 덕트 Layout에 따른 T-Method의 풍량 예측 및 실험)

  • Joo, Sung-Yong;Yee, Jurng-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.523-528
    • /
    • 2008
  • The accurate distribution of flow rate has been a very important part to control the air change rate since introduction of house ventilation system. An inappropriate selection of fan due to incorrect prediction of pressure loss in duct brings energy loss. In the previous study the pressure loss of general spiral duct was measured and database was constructed for finding correct loss factors in fitting upper stream. The purpose of this study is to compare and investigate the error range of flow rate by applying T-Method to bilateral symmetry and asymmetry layout of duct. The results of this study are as following. It is demanded to decide accurate size under duct design for house ventilation system. Because the small amount of Flow rate was considered at that time. The error range was 3.17% on case1 and 3.52% on case2. The error range difference was 0.35%.

  • PDF

A Numerical Study on the Flow Characteristics of Kitchen Hood System (주방용 후드시스템의 유동특성에 관한 수치적 연구)

  • Lim Kyung-Bin;Lee Kwang-Sub;Lee Chang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.359-369
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. This system is applied with $k-{\varepsilon}$ turbulent model and using incompressibility viscosity flow range and boundary condition which are related to Bossinesq approximation following density variation in control volume. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values.

A Study on Coating Deviation Effect by Air Knife Characteristics in CGL (연속용융도금라인에서 에어나이프 특성이 도금편차에 미치는 영향)

  • Bae, Y.H.;Ahn, D.S.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 1993
  • Air Wiping technique is widely used because of easy and efficient coating control in present CGL. Coaring weight is decided by nozzle header pressure, strip line speed and distance between strip and nozzle. Coating defects are results from unbalance of these factors and coating equipment calibration inaccuracy. Therefore, this study is mainly dealing with the cause of coating defects such as edge overcoating and coating deviation. The coptimum working condition is suggested by formulated coating model using collected working data. We developed two demension analysis program for air flow in nozzle and calculated dynamic pressure and air velocity with this program. The productivity and coating guality are improved by applying the result of this reserach.

  • PDF

Evaluation of a Large Space Indoor Air Flow Controling System with a CFD code for Enhancing indoor Environment

  • Chung Yong-Hyun;Onishi Junji;Soeda Haruo;Kim Dong-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • CFD code are used for numerically testing a new concept of large space air control system. A workshop with air-conditioners products lines and air-conditioned by several floor type air-containers is tested. The whole room air distribution is controlled by boosters installed in a middle height horizontal plane. First, calculated results are compared with measured data to confirm the validity and applicability of the prediction method. Next, the method is applied to case studies heating seasons. Results under some operating conditions show effectiveness in avoid the temperature stratification in winter.

An experimental study on the multiple parameter switching control for floor heating system (바닥 난방공간의 다인자 제어에 관한 실험적 연구)

  • Cho, S.H.;Tae, C.S.;Jang, C.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.472-483
    • /
    • 1997
  • An experimental facility consisting of two $3{\times}4.4{\times}3.8m$ rooms identical in construction is built. Each room has a control system and storage tank supplying hot water to the radiant floor heating system. The facility enables simultaneous comparision of two different control stratigies each implemented in a separate room. The operating performance of three kinds of flow control scheme is tested and compared in this study : (i) conventional on-off control based on feedback from room air temperature (ii) TPSC(two parameter switching control) (iii) TPOC(two parameter on-off control). Results show that TPSC and TPOC using room air and surface temperature sequentially as feedback signal to control hot water supply is the better temperature regulation scheme than conventional control based on feedback from only room air temperature. They are good candidates for the room with radiant floor heating system under continuous and intermittent heating mode.

  • PDF

Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method (상태 공간 기법을 이용한 원심압축기 공기 유량 모델 기반 적응 제어)

  • Han, Jaeyoung;Jung, Mooncheong;Yu, Sangseok;Yi, Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.535-542
    • /
    • 2016
  • In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Development of Red Pepper Dryer -Simulation and Optimization- (고추 건조기(乾燥機)의 개발(開發)에 관한 연구(硏究) -시뮬레이션 및 최적화-)

  • Keum, D.H.;Choi, C.H.;Kim, S.Y.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.248-262
    • /
    • 1991
  • Simulation model was developed to analyze drying process for tray type red pepper dryer and validated by experiments. This model could predict satisfactorily temperatures and moisture contents of red pepper and temperatures of drying air during drying. Optimize algorithm was developed to search control valiables (drying air temperature, air recycle ratio and air flow rate) of red pepper dryer based on a criterion of minimizing energy consumption under the constraint conditions that statisfied carotenoid retension of at least 210mg per 100g dry matter, the moisture content of bottom layer of 15% (d.b) and drying time of less than 35 hours. Step changes in drying air temperature and air recycle ratio were considered in the optimization. In single step in control variables, the difference of the moisture content between top layer and bottom layer was great and more fan power was required. As the drying trays were exchanged when the moisture content of bottom layer reached to 100% (d.b), fifty percent of energy was saved and the difference of moisture content was little. In double step changes in control variables, optimal conditions were found by changing the step when the moisture content of bottom layer reached to 100% (d.b) (about 19.8 hours from starting drying). Optimum air flow rate was $18.1cmm/m^2$. Optimum drying air temperature and air recycle ratio in the first step was $55.8^{\circ}C$ and 0.80, and in the second step $65.6^{\circ}C$ and 0.88, respectively. In triple step changes in control variables, the optimal conditions were found by changing the steps when the moisture content of bottom layer reached to 250% (d.b) and 150% (d.b). Optimal air temperatures were $66.2^{\circ}C$, $58.4^{\circ}C$ and $66.9^{\circ}C$, and optimal air recycle ratios were 0.778, 0.785, 0.862 at each step, respectively. Optimal air flow rate was $18.9cmm/m^2$. The best operating mode was triple step mode considering energy consumption, drying time, fan power, and quality of dried red pepper. When the triple step mode was used to dry the red pepper, the energy consumption was about 16.5%~57.2% less than that of the single step mode and the drying time was 6.6 hours shorter than that of the double step mode.

  • PDF