• Title/Summary/Keyword: Air Dose Rate

Search Result 105, Processing Time 0.021 seconds

The Effects on Antioxidants for Improving to Radiation Resistance of LDPE (저밀도 폴리에틸렌의 내방사선성 향상을 위한 산화방지제 첨가효과)

  • Kim, Ki-Yup;Kim, Pyeong-Jong;Lee, Chung;Kim, Jin-Ah;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.457-460
    • /
    • 2004
  • Many of the physical and chemical properties of polymer materials can be altered by high energy radiation. In the present work the exposure to radiation of low density polyethylene(LDPE) included antioxidants was carried out at various doses up to 600kGy at a dose rate of 5kGy/hr in the presence of air at room temperature. The study of the irradiation effects on the material properties has been make by different methods in an integrated way. The experimental data indicate that the decomposition onset temperature(DOT), the crystallinity and the thermoluminescence(TL) with radiation dose. DOT, crystallinity and TL analysis from irradiated PE samples provides useful data for the characterization of radiation-induced oxidation effects on these samples.

  • PDF

A study on radiation degradation of LDPE by using ESR (ESR을 이용한 저밀도 폴리에틸렌의 방사선 열화에 관한 연구)

  • Kim, Ki-Yup;Kim, Jin-Ah;Lee, Chung;Kim, Pyeong-Jong;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.473-476
    • /
    • 2004
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated using a $Co^{60}\;\gamma-ray$ and ray up to 800 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, free radical measurement of LDPE has established by electron spin resonance(ESR). Then, each sample was stored for 2 weeks. ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and changed from alkyl, allyl radical to peroxy radical with time.

  • PDF

Development of Multi-Type Soft X-ray Ionizer using Radiation Dose Overlapped Effect (선량 중첩을 이용한 멀티형 연 X-선 정전기 제거장치의 개발)

  • Lee, Su Hwan;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.28-31
    • /
    • 2018
  • In display and semi-conductor manufacturing process, there are numerous unstable factors such as particle concentration, minimal vibration, changes in magnetic field, or electrostatic that becomes an issue to be managed and controlled. In the recent, X-ray ionization is widely used that is neutralized by separating air or gas molecules in the area where the static must be resolved. The mono-type of X-ray ionizer was not capable to be used in $8^{th}$ generation panels manufacturing plant due to its insufficient ionizing coverage since the panel itself is approximately in $2m{\times}3m$. To resolve the current problem, the development of new type called, "Multi-type X-ray ionizer" has resulted in covering enough ionizing space in $8^{th}$ generation panels industry. Comparing mono and multi types with MCNPX code simulation, the multi one indicates more X-ray flux, efficiency, and ionization performance in comparison with either a mono-type or multi-type in array format. In addition, the ionizing efficiency of overlapping area with multi-type showed 30% higher effectiveness rate as to the ordinary mono-type.

Absorbed Dose for the Endovascular Ho-166-DTPA Brachytherapy Using a Balloon Angio Catheter (풍선도자관의 Ho-166-DTPA 흡수선량)

  • 조철우;박찬희;윤석남;강해준;김미화;장지선;박경배
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.98-103
    • /
    • 2002
  • The purpose of this study was to evaluate the absorbed dose to the coronary artery segment from various sized balloon angio catheters. The liquid form of Ho-166 was produced at the KAERI by (n, ${\gamma}$ ) reaction. We used GafChromic film for the estimation of the absorbed dose by beta particles. The exposed films were read using a videodensitometer. Several film exposures were made with varying irradiation times and activities. A modified micrometer was used for the measurement of the absorbed dose distribution near the balloon surface. Four balloons of coronary catheters evaluated were 30 m long and 2.5, 3.0, 3.5 and 4.0 mm in diameter. All doses are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 0.86, 1.01, 1.11 and 1.24 Gy/min/GBq/ml at a balloon surface for various balloon diameter 2.5, 3.0, 3.5 and 4.0 mm respectively. Using a vacuum pump, the air in the balloon was evacuated prior to instillation of the Ho-166 source. By removing air bubbles in the balloon, the absorbed dose distribution was more uniform.

  • PDF

A Study on the Ozoflotation Process for Drinking Water Treatment (Ozoflotation 공정의 정수처리 적용에 관한 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Lee, Hoon;Byun, Kyu Sik;Kwon, Soon Buhm;Sohn, Byeong Yong;Ahn, Hyo Won;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.528-534
    • /
    • 2005
  • Ozone, a powerful oxidant, is widely used to remove microorganisms, pesticides, taste and odor compounds effectively. Dissolved air flotation (OAF) has been known as an economical process for treating algae and low turbid water quality. An ozoflotation system, combining ozone and OAF processes, has a merit which can operate the ozonation and flotation process simultaneously in a single compartment. This study investigated the application of the ozoflotation process for advanced water treatment by carrying out the pilot-plant experiment. During the test, ozone microbubbles were generated through a OAF pump and many kinds of parameters were evaluated under several conditions, such as raw water flow rate and ozone dose. As a result of the test, the optimum operating conditions of ozoflotation were decided to be 1.2 mg/L ozone dose and about 34 minute Hydraulic retention time (HRT). Finally, it could be demonstrated that the ozoflotation system can effectively improve the drinking water quality.

Analysis of the Relationships according to the Frame (f/s) Change of Cine Imaging in Coronary Angiographic System: With Focus on FOV Enlargement and Live Zoom (심장 혈관 조영장치에서의 프레임 레이트(f/s) 변화에 따른 상관 관계 분석 : FOV 확대와 Live Zoom을 중점으로)

  • Kim, Won Hyo;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.845-852
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing absorbed dose according to changes in the number of frames in coronary angiography, also depending whether the zoom mode is FOV enlargement or Zoom Live. Moreover, for appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring the noise strength expressed by the standard deviation (SD), the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The study was conducted with an anthropomorphic phantom on an angio-system. The linear relationship between the frame rate and the radiation dose was evident. On the contrary, the indices of image quality (SD, SNR, and CNR) were almost constant irrespective of the number of frames. The difference depending on the zoom mode was not statistically significant for DAP, air kerma, and SD (p > 0.05). However, SNR and CNR were statistically different between FOV enlargement and Zoom Live. In conclusion, since the image quality was not degraded significantly with the decreasing frame rate from 30, 15, to 7.5 f/s and the radiation dose evidently decreases in almost exactly linear proportion to the decreasing frame rate, the number of frames per second needs to be maintained as low as reasonably achievable. As for the dependence on the zooming mode, the Live Zoom mode showed statistically significant improvement in the image quality indices of SNR and CNR and it justifies active use of the Live Zoom mode which enables real-time image enlargment without additional radiation dose.

Worker Exposure and Volatilization Pattern of Cadusafos, Ethoprophos and Probenazole after Applying Granular Type Formulation on Soil in Greenhouse (시설재배지에서 토양처리농약 Cadusafos, Ethoprophos와 Probenazole 입제 처리 후 휘산 양상과 농작업자 노출)

  • Park, Byung-Jun;Lee, Ji-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.160-165
    • /
    • 2011
  • BACKGROUND: This study carried out to fate of pesticide and investigate worker exposure of pesticide in air after applying granular type pesticide formulation on soil in greenhouse for preventing farmer's pesticide intoxication. METHODS AND RESULTS: The recovery of pesticide, cadusafos, ethoprophos and probenazole on absorbent in air were ranged 80.9~121.1% in charcoal and 90.6~99.0% in XAD-4, respectively. Emission rate of in lysimeter was higher 3~5 times than that of pesticides from topsoil not added water at $35^{\circ}C$ plot after applying a mixture of granular formulation and soil. The ethoprophos concentration in air, 50 cm high from soil surface at greenhouse, was reached the highest 186.4 ${\mu}g/m^3$ within 13 hours and were ranged 17.8~186.4 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 150 g a.i./245 $m^2$. The cadusafos concentration in air at greenhouse was reached the highest 37.3 ${\mu}g/m^3$ within 39 hours and were ranged 10.0~37.3 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 180 g a.i./245 $m^2$. The probenazole concentration in air at greenhouse was reached the highest 1.45 ${\mu}g/m^3$ within 37 hours and were ranged 0.23~1.45 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 144 g a.i./245 $m^2$. CONCLUSION(s): The result of the reentry interval study demonstrated that reentry intervals for ethoprophos and cadusafos are longer than 48 hours.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract (대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구)

  • 구재학;김종숭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

A preliminary study on real-time Rn/Tn discriminative detection using air-flow delay in two ion chambers in series

  • Sopan Das ;Junhyeok Kim ;Jaehyun Park ;Hojong Chang;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4644-4651
    • /
    • 2022
  • Due to its short half-life, thoron gas has been assumed to have negligible health hazards on humans compared to radon. But, one of the decay products with a long half-life can make it to be transported to a long distance and to cause a severe internal dose through respiration. Since most commercial radon detectors can not discriminate thoron signals from radon signals, it is very common to overestimate radon doses which in turn result in biased estimation of lung cancer risk in epidemiological studies. Though some methods had been suggested to measure thoron and radon separately, they could not be used for real-time measurement because of CR-39 or LR-115. In this study, an effective method was suggested to measure radon and thoron separately from the free air. It was observed that the activity of thoron decreases exponentially due to delay time caused by a long pipe between two chambers. Therefore from two ion chambers apart in time, it was demonstrated that thoron and radon could be measured separately and simultaneously. We also developed a collimated alpha source and with this source and an SBD, we could convert the ion chamber reading to count rate in cps.