• 제목/요약/키워드: Air Cooler

검색결과 223건 처리시간 0.024초

핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교 (Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools)

  • 정석권;이단비;윤정인
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

재생입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향 (Effects of Performance Analysis of a Desiccant Cooling System with a Direct Evaporative Cooler in the Inlet of Regeneration Process)

  • 다쉬 울찌우타스;성상철;오명도;이대영
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.328-335
    • /
    • 2010
  • The purpose of this study is to make an analysis of influence on the cooling capacity and COP of a desiccant cooling system with a regenerative evaporative cooler when a direct evaporative cooler was applied to the inlet of regeneration process of this system. We used cycle simulation in order to analyze the performance of this system. From the cycle simulation, we knew that the optimal rotation time of desiccant rotor was between 160s and 220s and hardly ever affected cooling capacity of desiccant cooling system when this system was operated at the outdoor air condition of $35^{\circ}$ and 40% RH and low regeneration temperature of $60^{\circ}$. Also there was optimal area ratio of regeneration to dehumidification between 0.7 and 1.0. Our results showed that it had a small effect on the system’s cooling capacity to install direct evaporative cooler at the inlet of regeneration process.

증발수 유량이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of Evaporation Water Flow Rate on the Performance of an Indirect Evaporative Cooler)

  • 추현선;이관수;이대영
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.714-721
    • /
    • 2006
  • In evaporative cooling applications, the evaporation water is supplied usually sufficiently larger than the amount evaporated to enlarge contact surface between the water and the air. Especially in indirect evaporative coolers, however, if the evaporation water flow rate is excessively large, the evaporative cooling effect is not used for heat absorption from the hot fluid but spent to the sensible cooling of the evaporation water itself. This would result in a decrease in the cooling performance of the indirect evaporative cooler. In this study, the effects of the evaporation water flow rate on the cooling performance are investigated theoretically. The cooling process in an indirect evaporative cooler is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and the evaporation water. Based on the exact solutions, it is analyzed how much the cooling performance is affected by the evaporation water flow rate. The results show that the decrease in the cooling effectiveness is substantial even for a small flow rate of the evaporation water and the relative decrease is more serious for a high-performance evaporative cooler.

경제성 평가를 이용한 프리쿨링시스템의 국내 적용성 연구 (A Study on Application of the Free Cooling System with Dry Cooler Using Economic Evaluation)

  • 윤정인;손창효;김희민;김영민
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.50-55
    • /
    • 2015
  • Recently, because of the deterioration of the nuclear generating station and increase of the cooler and heater, energy problem is increasing. To save the energy, the free cooling system is developed. The free cooling system is that cool the water to use cooled air in winter and is used in industrial process or data center. Yoon check the energy of free cooling system with dry cooler in korea. In this study, the value of the free cooling system with dry cooler is confirmed through using the NPV that is economic evaluation. when temperature degree of the cooled water is 10, in Chuncheon and Seoul the value is the most high. When temperature degree of the cooled water is 20, in Ulsan the value is the most high. As the result, because the using the temperature degree of the cooled water is high in the industrial process, the free cooling system is advantageous in korea.

상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석 (Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

대향류 핀삽입형 재생증발식 냉방기의 냉방성능 (Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels)

  • 문현기;이대영
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

A Study on the Effects of System Pressure on Heat and Mass Transfer Rates of an Air Cooler

  • Jung, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.696-702
    • /
    • 2002
  • In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychrometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements.

PF 열교환기가 적용된 슬림형 중계기 냉각기 (Slim Electronic Panel Cooler with Parallel Flow Condenser)

  • 조진표;김내현;이재훈;이진용;목인균;임원경;임석선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.483-488
    • /
    • 2006
  • In this study, newly-developed slim electronic panel cooler with aluminum PF condenser and evaporator was tested and the results are compared with imported panel cooler with fin-tube heat exchangers. The PF heat exchangers significantly (approximately 45%) reduced the refrigerant charge. The air-side pressure drop was also reduced, which resulted in the reduction of the sound level of the panel cooler. The effect of the condenser size was also investigated.

  • PDF

차량용 열제어 관리 시스템의 성능 시뮬레이션 프로그램 개발 (Development of Simulation Program of Vehicle Thermal Managements System)

  • 배석정;허형석;김현철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2008
  • The computer-aided performance simulation can reduce periods for development of products and cut down on the cost comparing with former trial-and-error procedures. This study has developed a simulation program for a vehicle thermal management system integrating an engine cooling system and an air conditioning system considering interactions and arrangement of air side heat exchangers such as power steering oil cooler, air-cooled transmission oil cooler, condenser, and radiator. The program may be also used for the system performance analysis according to the configuration of the engine coolant side heat exchangers such as water-cooled transmission oil cooler, EGR cooler, and heater core. Experiments utilizing an environmental wind tunnel has been conducted to assess the performance of the system according to the arrangement of air side heat exchangers. Some modification of the coolant loop layout can enhance the heat core performance up to 7% according to the results of the simulations.

  • PDF