• Title/Summary/Keyword: Air Compressor Design

Search Result 319, Processing Time 0.021 seconds

Performance Analysis of Screw Air Compressor (스크류 공기 압축기의 성능해석)

  • Park, Dong-Gyu;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.184-193
    • /
    • 2002
  • This study aims at the optimal design of the screw rotor and its performance analysis. The optimal design of the screw rotor's shape has been performed theoretically. Also, the performance analysis technique of an oil-injected screw air compressor is developed. The effect of internal leakage, heat exchange between air and oil, and flow resistance at suction and discharge ports are included in the performance analysis. Some numerical examples of the volumetric efficiency and adiabatic efficiency for sample rotors are demonstrated for various lobe combination, rotor wrap angles and L/D ratios.

Lubrication Characteristics Between the Vane and the Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Jung, Jae-Youn;Oh, Seok-Hyung;Cho, Ihn-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.562-568
    • /
    • 2001
  • The rolling piston type-rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in critical sliding components is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems was studied. The Newton-Raphson method was used for the partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results showed that the rotational speed of a shaft and the discharge pressure significantly influence the friction force and the energy loss between the vane and the rolling piston.

  • PDF

A Study on Dynamic Characteristics of Core in Turbo Air Compressor (터보공기압축기 코어 동특성 연구)

  • Hur, Nam-Soo;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.885-893
    • /
    • 2006
  • A dynamic model of turbo air compressor having multi-helical gear pairs is developed by transfer matrix method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse, torsion, and axial motions due to gearing. The program which can be used to analyze and predict the vibrational characteristics by the mass unbalance of the rotors and gear transmission error of turbo compressor is developed with this system model We expect this developed program to contribute the reduction of the vibration/noise on turbo compressor in the field of both design and manufacturing and can be used as a basic sub-program for CAD/CAM of low-noised gear teeth also.

The Lubrication Characteristics of a Rotary Compressor Used for Refrigeration and Air-conditioning Systems (Part III; Analysis of partial elastohydrodynamic lubrication on vane tip)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.138-145
    • /
    • 2001
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is a part of research program directed toward maximizing these advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems is studied. Newton-Raphson method is used for the partial elastohydrodynamic lubrication analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force and the energy loss between vane and rolling piston.

Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle (철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구)

  • Kim, Moo Sun;Chung, Jong Deok;Jang, Seongil;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.

Design and Operation Characteristics of a Two-Stage Compressor (이단 압축기의 동력학적 설계 및 운전 특성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.55-61
    • /
    • 2002
  • The feasibility of an oil-free, motor-driven, two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by a 75 kW motor at an operating speed of 39,000 RPM, and a pressure ratio of the compressor is set up to 4. The analysis is performed by using bearing equilibrium position, heaving stillness, Campbell diagram, unbalance response, and stability. It is demonstrated in this paper that air bump bearings can be adopted well to an oil-free, motor-driven, centrifugal compressor. Specially, Cu-coated bump bearings have enough damping force to reduce a synchronous unbalance for rigid modes of the two-stage compressor. Futhermore, this concept may be applied to the flexible rotor system such as high speed turbomachinery with a super critical speed.

Performance Analysis of a Combined Scroll Expander-compressor unit for a Fuel Cell System (연료전지용 스크롤 팽창기-압축기 성능해석)

  • Kim, S.J.;Ahn, J.M.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • This paper introduces a conceptual design of a combined scroll expander-compressor unit for a fuel cell. Since air discharged out of the fuel cell stack has still high pressure energy, some power can be extracted from the air by directing it to pass through an expanding device. Such extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed for a 1kW-class fuel cell. The orbiting scroll members of the expander and the compressor were made to share three of common drive shafts installed in the mid frame plate. Performance analysis for the combined expander-compressor unit showed that the installation of this unit could reduce the auxiliary power consumption in the fuel cell by about 42%.

  • PDF

Comparison of vibration and Noise Characteristics for Reciprocating Air Compressor through the Change of Crankshaft Parameters (크랭크샤프트의 형상 변경을 통한 소형 왕복동 공기압축기의 진동 및 소음 특성 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Aminudin, Bin Abu;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.530-533
    • /
    • 2005
  • Recently, modern reciprocating air compressors tend to be smaller and lighter. But, as the development of performance, they have many problems for noise and vibration. For this reason, many researches are processing for the reduction of noise and vibration by arranging cylinders with V/W type. Especially, noise and vibration problems of reciprocating air compressor cause a rotating unbalance of crankshaft, so it needs a change of crankshaft parameters appropriately. Hence in this study, we changed crankshaft parameters to solve the rotating unbalance and compared results in order to verify the noise and vibration reduction between new and original air compressor. According to modify a crankshaft parameter, the improvements of noise and vibration were showed results of spectrum measured at selected points of the air compressor crankshaft housing and sound intensity contours measured at a belt left side, table that figure out characteristics of noise. Furthermore, we analyzed objective sound quality metrics with recording data of systems. The results showed that, the new design has improved the level of the first harmonic of vibration displacement, noise and objective sound quality metrics.

  • PDF

Design of Gas-Injection Port of an Asymmetric Scroll Compressor for Heat Pump Systems (히트 펌프용 비대칭 스크롤 압축기의 가스 인젝션 포트 설계)

  • Kim, Yong-Hee;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.300-306
    • /
    • 2015
  • For an asymmetric scroll compressor for heat pump application, a numerical simulation was carried out to investigate the effects of injection port design on the compressor's performance under gas injection. To validate the simulation, the numerical results were compared with experimental results obtained from a scroll compressor with a base injection port design. There was good agreement between simulation and experimental results, with around a 1% difference in the injection mass flow rate when the injection pressure was below $12kgf/cm^2A$ for the heating mode. Various injection port angular positions were numerically tested to yield better injection performance. The largest improvement in heating capacity was obtained at angles of $240^{\circ}$ and $200^{\circ}$ inward from the scroll wrap end angle for low-temperature and standard heating conditions, respectively, while the maximum COP improvement was at $365^{\circ}$ and $280^{\circ}$, respectively. A considerable improvement in cooling capacity was also found at the injection port angle of $240^{\circ}$.