• Title/Summary/Keyword: Air Compression System

Search Result 259, Processing Time 0.026 seconds

Development Can Air Leak Detector System For Single Compression Head-Line Type Using Pressure Sensor (압력 센서를 이용한 씽글 헤드라인 타입의 캔 에어 리크 검출씨스템 개발)

  • Lee, Jong-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.506-507
    • /
    • 1992
  • When it comes to the 'Leak Detector System' generally, our country has a large income 'Rotary Type Leak Detector' of foreign goods. The completed development of the 'Line Type Leak-Detector' system was produced to check Whether the containers for small and large on the filling line are auto defective. This system is applied to the filling package Processing during the production and contributed to inproving competiveness of domestic containers manufactures of all society of Industry. Also, high precision and realiablity, very compact size, low cost and Easy set-up etc. by checking the experimental data directly plan, Design and making for '1 Compression Head Control Leak Detector System'. This flexcible system can be equipped with multiple Compression heads depending on the requested prodution test rate and test precision.

  • PDF

Comparison of Physical Properties on the Worsted Fabrics Woven with Rapier and Air Jet Looms(II) - Characteristics of Shear, Compression and Surface - (Air Jet와 Rapier 직기 특성이 모직물의 역학적 특성에 미치는 영향(II) - 전단특성, 압축특성, 표면특성 관하여 -)

  • 박수현;김승진;홍성철
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • In this study, the fabrics were woven with worsted grams of Nm 2/72 and the structure of 5 harness satin on rapier and air-jet loom with different weft insertion mechanism and then fabrics were finished in the same processes. Also the physical properties were measured with KES-FB system and discussed with the characteristics of looms for comparing the difference of physical properties of the worsted fabrics which were woven with two different looms under the same structure. Pot shearing and compression properties, then showed similar behavior and the fabric finishing processes were seemed to affect much more than the difference of the loom types. For the surface roughness, the rapier fabrics showed higher irregularity than the air-jet fabrics.

  • PDF

A Theoretical Study on Fuel Economy Improvements by Pneumatic Type Braking Energy Regeneration System Using the Scroll Mechanism (스크롤 기기 이용 공압식 회생제동시스템의 연비향상 효과에 관한 연구)

  • Shin, Dong-Gil;Kim, Young-Min;Kim, Yong-Rae
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.286-291
    • /
    • 2011
  • The hybrid vehicle has a good fuel economy with a electric type braking energy regeneration system. This paper introduced a novel pneumatic type braking energy regeneration system. The novel system use a scroll mechanism which have both compression function and expansion function. While vehicle is decelerating, the scroll machinery, being operated as a scroll compressor, compress a atmospheric air to save the vehicle's kinetic energy and reuse a compressed air which is reserved in a air tank while vehicle is accelerating. In order to analyze fuel improvements by applying braking energy regeneration system to a vehicle, we simulated the rate of braking energy regeneration through CVS-75 mode driving patterns.

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

Optimization Study of the Compression/Absorption Hybrid Heat Pump Cycle (증기압축식/흡수식 하이브리드 히트펌프 사이클에 관한 최적화 연구)

  • 전관택;박춘건;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-58
    • /
    • 2001
  • For the past few decades the vapor compression cycle with a solution circuit (VCCSC) has been known to provide high efficiency and variable capacity. In this study performance of a VCCSC cycle is examined through computer simulation. In the simulation heat exchangers were modelled by specifying UA or effectiveness values while the compressor performance was specified by an isentropic efficiency. Aqua/ammonia solution was chosen as the working fluid which can be used in the high temperature range. The results show that there exists an optimum operation condition which is dependent upon the temperatures of the external heat transfer fluids(HTFs). Besides the HTF\`s temperature, the maximum system pressure and the size of the solution heat exchanger are shown to have an influence on the optimum operation condition. Finally, as compared to a simple vapor compression heat pump with HFC134a, the COP of the VCCSC is shown to be 2∼22% higher.

  • PDF

Experimental Study on the Cooling Characteristics of an Environmental Control System for Avionic Reconnaissance Equipment (항공정찰장비용 환경제어시스템의 냉각특성에 관한 실험적 연구)

  • Kang, Hoon;Park, Hyung-Pil;Lee, Eung-Chan;Kim, Yong-Chan;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.519-526
    • /
    • 2009
  • Environmental control system is adopted to control the thermal load from the avionic equipment in the reconnaissance pod which is mounted under a fighter aircraft, undergoing large and rapid environmental changes with the variations of flight altitude and velocity. In this study, an environmental control system was designed and built by adopting vapor compression cycle using R-124. The cooling performance characteristics of the system were measured varying operating parameters: thermal load in the pod, air mass flow rate through evaporator, condenser inlet air temperature, and air mass flow rate through condenser. The effects of the experimental parameters on the system performance were analyzed based on the experimental results. The problems on the designed system were also analyzed and the solutions were suggested to improve system efficiency and to obtain stable operation.

A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a (R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구)

  • Cho, Honghyun;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.362-368
    • /
    • 2015
  • This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

Analysis of Oil Supply System of a R134a Rotary Vane Compressor (R134a 로타리 베인 압축기 급유 계통 해석)

  • Kim, Ho-Young;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.113-118
    • /
    • 2008
  • For a R134a rotary vane compressor used for car air conditioners, characteristics of gas compression and oil supply have been studied. The compressor model under investigation has the low volume ratio of suction to discharge volumes so that there occur flow reversal from discharge port to compression chamber as the leading vane passes over the discharge port. As a result, the volumetric and adiabatic efficiencies turn out to be relatively low compared to other types of displacement compressors. Oil supply mechanism has been comprehended for mathematical modeling and oil flow rate has been calculated for the individual oil passages. This study on the gas compression and oil supply of a rotary vane compressor can be applied to a future design practice on a similar type of compressor.

  • PDF

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.