• Title/Summary/Keyword: Air Compression System

Search Result 259, Processing Time 0.026 seconds

A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine (GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구)

  • Kim, K.B.;Song, M.J.;Kim, K.S.;Kang, S.H.;Lee, Y.H.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

A study on derating of diesel main engine (디젤 주기관의 DERATING에 관한 연구)

  • Cho, Kwon-Hae;Park, Go-Ryong;Lee, Dong-Hun;Kim, In-Suk;Lee, Sung-Gwan;Jang, Tae-Lin;Moon, Byung-Jin;Son, Min-Su
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1069-1076
    • /
    • 2005
  • The oil crises in 1973 and 1979 caused considerable effort to decrease the fuel consumption. As a result, the main engine had been changed through the shape(from loop scavenging air system to uniflow scavenging air system), higher compression ratio, low speed and long stroke. It is difficult to make a various engine satisfied with all owner's request. So manufacturer could find a way that can change the rating through large range from the engine already manufactured. These ways are tried through large range to change rpm to 72% and engine's output to 48% of MCR with keeping the normal engine's shape almost. The important element considered in the process of derated output of the main engine is to recover the beginning overcapitalization as soon as possible through low SFOC. In this paper, it is compared and considered between rating and derating engine with several data about modifying rating which have been done by engine manufacturer so far. And the selection process of derating engine is studied also.

  • PDF

Studies on the Performance of a Cam Driving Electronic Expansion Valve for Vehicles (캠구동 방식을 적용한 자동차 공조시스템용 전자팽창밸브의 성능에 관한 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.732-736
    • /
    • 2016
  • Air conditioning part designs are moving towards higher efficiency and productivity. The expansion device is one of the core parts of an air conditioning system and controls the refrigerant quantity, evaporation load, compression capacity, and condensation capacity. In this study, an electronic expansion valve for two working fluids ($CO_2$ and R134a) was developed for air conditioning systems in vehicles. The valve uses an eccentric cam driving structure instead of a lead screw to decrease manufacturing costs and increase productivity. The pressure resistance and flow rate performance was evaluated using numerical analysis. At maximum operation conditions and burst pressure conditions with $CO_2$, the maximum stresses on the valve model were about 98 MPa and 223 MPa, respectively. The maximum flow rates of $CO_2$ and R134a with different orifice openings were about 550 kg/h and 386 kg/h, respectively. The performance with R134a was verified by experiments.

Economic evaluation on heating systems of apartment complex (공동주택단지 난방시스템들에 대한 경제성 평가)

  • 조금남;윤승호;김원배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.773-783
    • /
    • 1998
  • The heating system for apartment complex may be classified as old systems including central system with steam boiler(S1), gas engine driven heat pump system(S2), system using waste heat(S3) and new systems including mechanical vapor re-compression system with flashing heat exchangers(S4), system using methanol(S5), system using metal hydride (S6). The purpose of the present study is to suggest optimal heating system by technically, economically and environmentally evaluating old and new heating systems of apartment complex from 500 to 3,000 households. Economic evaluation based on the technical evaluation results which estimated heat transfer area of heat exchangers and capacity of equipments was estimated initial investment cost, annual operating cost and relative payback period by considering annual increasing rates of energy cost and interest. Environmental evaluation provided annual generation rate of carbon dioxide. Initial investment cost was cheap in the order of S6, S5, S3, S2, S4, S1, annual operating cost was cheap in the order of S1, S2, S4, S5 and relative payback period was short in the order of S6, S5, S2, S3 and S4. Relative payback period was within 8 years for all scenarios of 3,000 households, and was increased as annual increasing rates of energy cost and interest were increased. As transportation pipe length was increased twice, payback period was increased by 1.4~2.6 time. The effect of temperatures of waste gas and waste water on the relative payback period was small within 0.8 years. The annual generation rate of carbon dioxide was big in the order of S4, S2 and S1. S4 was the most economic system among whole scenarios when S1 was replaced with other scenarios.

  • PDF

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.

Automobile Engine Diagnostic System by Current Monitoring to Self Motor (시동모터 전류 관찰에 의한 자동차엔진 압축압력 검사장치)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Four-stroke cycles in an automobile engine are suction stroke, compression stroke, combustion stroke and exhaustion stroke. A normal operation of engine in compression and power stroke must be processed in optimal fuel-air pressure. In this paper we describe a development of measuring equipment for engine cylinder pressure with observing supply current to self motor(start motor). By comparing the current wave on pressure of the 4 or 6 cylinder in engine, a abnormal cylinder state will be found. The validity of the proposed measuring equipment was shown by experiment for real automobile.

Study on Noise Generation Characteristics of Simulated EGR System for Compression Ignition Diesel Engine (압축착화 디젤엔진의 모사 EGR 시스템에 의한 소음 특성 변화 분석)

  • Park, B.;Yoon, S.;Park, S.;Park, J.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.204-210
    • /
    • 2014
  • Experimental study was conducted to investigate the effect of EGR(exhaust gas recirculation) on engine noise using single cylinder combustion ignition engine. Under constant engine rotary speed of 1200 RPM, 8 mg fuel quantity was injected with 15, 18 and 21% of oxygen ratio and 1400 bar of injection pressure. Using the in-cylinder pressure data acquired by a piezoelectric transducer, the engine performance parameters were calculated. Radiated engine noise measured for 10 seconds was analyzed using spectral characteristics and sound quality metrics such as loudness, sharpness, roughness. From the obtained engine performance parameters and sound quality metrics, effect of oxygen ratio of the premixed air, start of injection timing on frequency characteristic and sound quality metrics were analyzed. Correlation analysis was conducted between MPRR(maximum pressure rise rate), RI(ringing intensity) and sound quality metrics. RI was identified as the most important factor having influence on the sound quality metrics.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Simulation of Refrigeration System with MPCM Slurry as Secondary Fluid (마이크로캡슐 잠열재 슬러리를 적용한 증기압축식 냉동기의 성능 모델링)

  • Choi, Jong-Min;Kim, Yong-Chan;Cheon, Deok-Woo;Kang, Hoon;Yoon, Joon-Sang;Cho, Han-Ho;Kim, Young-Bae;Lee, Ho-Seong;Choi, Kwang-Min;Kang, Yong-Hwa;Jeon, Jong-Ug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.501-508
    • /
    • 2006
  • MPCM (Microencapsulated Phase Change Material) slurries show several advantages over the sensible heat transportation system. In this study, a numerical model for a vapor compression refrigeration system using MPCM slurries as a secondary fluid through an evaporator was developed, and the system performance was compared with that using water. Generally, the MPCM system showed higher performance than the water system. The COP of the MPCM system was higher by 16.6 to 18.6% than that of the water system at all conditions. The MPCM slurry yields better performance in the aspect of heat transfer and heat transportation comparing to the sensible heat transfer medium such as water.

Development of Heating and Cooling System with Heat Pump for Nutrient Solution Bed In Greenhouse (열펌프를 이용한 양액베드 냉난방시스템 개발)

  • Kang, Geum-Chun;Kim, Yeong-Jung;Yu, Yeong-Seon;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2002
  • In order to control the root-zone temperature of greenhouse crops in the hydroponics at hot and cold season, heat pump system for cooling and heating was built and tested in this work. The system was air-to-water type and vapour compression type. The heating and cooling mode was selected by the four way valve. Capacity of the compressor was 3.75㎾ and heat transfer area of the evaporator and the condenser were 3.05㎡ and 0.6㎡, respectively. According to the performance test, it could supply heat of 42,360 to 64,372kJ/h depending on the water circulation rate of 600 to 1,500ℓ/h, respectively, when indoor air temperature was 10∼20$\^{C}$. COP of heat pump system was 3.0 to 4.0 in the heating mode. But, COP of the cooling mode was 1.3 to 2.1 at indoor temperature of 20∼35$\^{C}$. The feasibility test in the greenhouse the developed heating and cooling system was installed, showed that the heating cost of the developed system was only about 13% of that of the conventional heating system. The heating cost of the developed system was 367won/day(electric consumption 9.7㎾h/day), while that of the conventional system was 2,803won/day(oil consumption 7.7ℓ/day) at the same heating mode.