• Title/Summary/Keyword: Air Bubble

Search Result 406, Processing Time 0.038 seconds

The Experimental Study on Deflation of Air for Top-Down Joint area (역타기둥 이음부의 공기포 배출을 위한 실험적 연구)

  • 임형일;이동하;백민수;박병근;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.763-768
    • /
    • 2001
  • The purpose of this study is to research a specific material characteristics of top down concrete at column joint and to reduce column joint opening. Based on the established top down study, the experiment to apply an real construction case is performed. When the concrete placed into joint of top down column, raised air bubble is left as opening. This study is examined the incomplete packing reason in the top down column and found to air deflation method. The result of study is below (1) As the method to minimize column opening caused from confined air, it is required that an air exhaust port installation in joint column. (2) From air exhaust port installation, most of air bubble in column part is exhausted. As the concrete placing height is going up, air bubble size is going smaller.

  • PDF

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

Continuous rapid Production of Soy Sauce by Coimmobilized Mixed Culture system of Zygosaccharomyces rouxii and Candida versatilis using Air Bubble Column Reactor (Zygosaccharomyces rouxii와 Candida versatilis의 동시 고정화에 의한 Air Bubble Column Reactor에서 간장의 연속적 속성 생산)

  • 류병호
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • This study was designed to find out the rapid fermentation of soy sauce from koji hydrolyzates using air bubble column reactor packed with coimmobilized mixed culture system. Continuous ripid production was performed by coimmobilized Z. rouxiii BH-90 and C. versatilis BH-91. Coimmobilized cells of Zygosaccharomyces rouxii BH-90 and Candida versatilis BH-91 mixture cells in the column reactor produced 2.8% ethyl alcohol and 18mg/L 4-ethylguaiacol over 96 hours under the optimal conditions. Coimmobilized cells produced 2.30∼2.4% ethyl alcohol during 30 days, and decreased gradually from 40 days to 70 days. Also coimmobilized cells produced 4-ethylguaiacol at the constant rate of 16∼18mg/L and decreased gradually after 40 days. Final product of soy sauce contained 2.4% ethyl alcohol and 18mg/L 4-ethylguaiacol. However, amino acid compositions of soy sauce were consisted of predominantly glutamic acid, leucin, arginine, aspartic acid, Iysine and valine, which were more than 50% of total amino acid.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles (기포운동에 따른 2상유동 특성에 관한 연구)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.268-273
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas is concentrated at the near nozzle, the flow parameters are high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (P.I..V) and a thermo-vision camera were used in the present study. The experimental results show that heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

Micro-Bubble Generating Properties on Gas/Liquid Flow Rate Ratio with the Sludge Flotation/Thickening Apparatus (슬러지 부상농축장치의 기·액 유량비에 따른 미세기포 발생 특성)

  • Lee, Chang-Han;Park, Jong-Won;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • The sludge flotation/thickening apparatus equipped a micro-bubble generating pump was used to investigate micro-bubble generating properties on operational parameters. We evaluated micro-bubble generating properties as results to be operated the apparatus by operational parameters which are pump discharge pressure, air/water ratio(A/W ratio), air flow rate, and water flow rate. Micro-bubble generating efficiencies in pumps without recycling flow and with 50% of recycling flow was found to be very efficient on optimum A/W ratio from 1.06 to 3.62% and optimum A/W ratio from 1.05 to 4.06%, respectively. In condition of 3.6% of A/W ratio, we showed that the apparatus could be generated 36,000 ppm of micro-bubble concentration to be optimum treatment efficiency in sludge thickening process.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection (수직상향 기체 주입에 따른 기포 및 액상의 유동분석)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.