• Title/Summary/Keyword: Air Bar

Search Result 324, Processing Time 0.023 seconds

Equivalence Ratio Measurements in Gas Spray Using Laser Raman Scattering (Laser Raman Scattering을 이용한 가스 분무내 당량비 계측에 관한 연구)

  • Jin, S.H.;Park, K.S.;Song, J.I.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.7-14
    • /
    • 1997
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air mixture in injected spray. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity signal. Raman shifts and Raman scattering cross -sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ are measured precisely. Our results show an excellent agreement with those of other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air shows that $O_2:N_2=0.206:0.794$. We used gas injector which was operated at 1 bar. Methane is used as a fuel. Spray region is $10mm\times37mm$ and this region is divided into 80 points. In Raman signals are obtained and ensemble averaged for each point. 3-d and contour plot of distribution of equuivalence ratio is presented. Our measured results show that the equivalence ratio of methane/air mixture in methane-rich region is reasonable. However, more study is necessary for methane-lean region because background noise level is almost same as Raman intensity of methane.

  • PDF

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

The Study on Flame Structure and NOx Emissions by Swirl Numbers and Fuel-Air Mixing Length in a Dump Combustor Gas Turbine (모형 가스터빈 연소기에서의 스월수와 혼합길이에 따른 화염구조와 NOx배출에 관한 실험적 연구)

  • Choi, Do-Wook;Kim, Gyu-Bo;Jeon, Chung-Hwan;Song, Ju-Hun;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.849-857
    • /
    • 2009
  • The experimental study was performed to investigate the effects of partial premixing, varying the equivalence ratio, mixing degree, swirl intensity, mixing length on the characteristics of flame structure and NOx emission. Experiments were conducted in a dump combustor at 1 bar using methane as fuel. Inlet air temperature was 570K. OH chemiluminescence images were acquired with an ICCD camera. As a result of the experimental investigation of characteristics of flame and NOx emission in partial premixed combustor, we can conclude the results as below. With the increase of swirl number, The flame length decreases and the flame width increases and it helps flame stabilization. It means that lean flammability limit is extended. With the increase of mixing of fuel-air length ratio, Flame goes to be stabilized and NOx emission and $OH^{\ast}$ intensity decrease. Through the comparison of preceding results, It is possible that the exhausted NOx emission from a gas turbine combustor will be able to predict through the $OH^{\ast}$ intensity.

Effect of pressure and stochiometric air ratio on flame structure and NOx emission in gas turbine dump combustor with double cone burner (이중원추형 모형연소기에서 압력과 공기비에 따른 화염 구조 및 NOx 배출특성)

  • Nam, Hyun Su;Han, Dong Sik;Kim, Gyu Bo;Jeo, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.177-179
    • /
    • 2012
  • This work presents an experimental investigation to study $NO_x$ emissions under stoichiometric air ratio and elevated pressure (2~10bar) in a High Press Combustor(HPC) equiped with double cone burner which was designed by Pusan Clean Coal Center(PC3). Exaust gas temperature and $NO_x$ emissions were measured at the end of the combustion chamber. The $OH^*$ radical concentration and $NO_x$ emission were decreased as a function of increasing ${\lambda}$ generally. On the other hand, $OH^*$ radical concentration and $NO_x$ emission increased with ${\lambda}$ pressure of the combustion chamber. $NO_x$ emissions which were governed by thermal $NO_x$, were highly increased under the elevated pressure, but slightly increased at sufficiently low fuel concentrations (${\lambda}>2.0$).

  • PDF

Assemblage and Driving Characteristics of a Ultrasonic Fabric Washing Machine (초음파 직물수세기의 구성 및 구동 특성)

  • 이춘길;이광수
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.207-217
    • /
    • 2000
  • A new, high-efficiency ultrasonic fabric washing machine was developed to be an energy-efficient washing machine and to enhance fabric washing quality in washing processes of the dyeing and finishing process in the textile industry. This system is composed of ultrasonic wave generator, air blowing nozzle, torque motor for fabric tension control, and enclosed washing bath, multi-tube type exchanger, noiseless heater, air cylinder, expander roller, mangle upper and lower rollers, bend bar, dancer, shower spray nozzle, and solenoid valve, and so on. These elements are synergised for fabric washing. One of the very important principles is the low tension fabric running system. For an efficient washing effect, a counter flow system is also adopted. The new system also adopts the dancer and torque motor to control fabric tension and prevent fabric creasing. Shower spray nozzle, counter flow and overflow apparatus, and air-blowing apparatus are adopted to enhance the fabric washing effect. In this study, peach yoryu, exter, and moss crepe fabrics were washed by the general and ultrasonic washing systems under different conditions respectively. The washing efficiency was affected by the fabric running speed and characteristics of fabrics. Size content after washing increased with increasing the fabric running speed. The values in the general washing system were higher than those of the ultrasonic washing system. The changes of conductivity in the ultrasonic and the cooling bath were affected by the running time under the ultrasonic generating. The values of conductivity decreased as the experimental time passed.

  • PDF

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas (합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선)

  • Park, Hyunwook;Lee, Junsun;Jamsran, Narankhuu;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

Fabric Weavability and Machine Efficiency in the Various Weaving Machines such as Projectile, Rapiers, and Air-jet (프로젝타일, 래피어 그리고 에어젯트 직기의 제직성과 직기효율)

  • Kim, S.J.;Yeo, G.D.
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This paper surveys the fabric weavability and machine efficiency in the various weaving looms such as Projectile, Rapiers, and Air-jet. Used projectile loom was Sulzer-PU, and FAST-R, THEMA-11E, and Picanol-GTX were used for Rapier looms, as the Air-Jet looms, Picanol PAT and OMNI types were used. Using these looms, 5 harness worsted satin fabrics were woven for surveying the fabric weavability and machine efficiency. Warp yam count of fabric is 1/40Nm, Sirofil, and filling is 1/30 Nm, worsted. End breaks of warp and filling directions for the various types of looms are measured and discussed with the mechanism of each loom. Warp and filling yam tensions are also measured and analysed with open width of shedding motion of each weaving machine. And various warp yam tensions with open width of shedding are measured and analysed according to the warp yam in various heald frame. These results fire also discussed with temples such as bar and ring. Warp yam tensions at the various positions on the fabric with various looms are measured and discussed with fabric mechanical properties such as tensile, bending, shear and surface.

  • PDF

Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code (LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석)

  • Kim, Moon-Saeng;Lim, Dong-Wan;Lee, Joon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

Thermal Conductivity Measurement of Rock Cores from Ulleung Island Using PEDB System at Room Temperature (상온 환경에서 PEDB를 이용한 울릉도 시추코어의 열전도도 예비 측정)

  • Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.121-130
    • /
    • 2016
  • Several factors are discussed that should be considered in measuring thermal conductivity of rock cores with a PEDB (potable electronic divided bar) system, which is relatively accurate and easy to operate, and can measure the thermal conductivity of rock cores for various diameters. Then the system is applied to measure thermal conductivity of 70 rock cores from Ulleung Island. Air temperature affects most on the thermal conductivity measurements, so that it is very important to minimize the temperature change during the measurement. Other factors such as the temperature of heat source, averaging time window on the thermal conductivity measurements do not affect much compared to air temperature. Slightly higher thermal conductivity is measured when using the thermal contact paste between the sample and heat source or heat sink. Especially, rock cores with irregular surface showed bigger difference. Repeatability showed less than ${\pm}0.3%$ for standard samples and less than ${\pm}4%$ for rock samples, respectively, when the room temperature changes within $1^{\circ}C$ during the measurements. Thermal conductivity of the rock cores from Ulleung Island roughly increases as depth increases but does not show any dependency on the rock types.