• Title/Summary/Keyword: Air/fuel control

Search Result 477, Processing Time 0.019 seconds

Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines (승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구)

  • Hong, Seungwoo;Park, Inseok;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

Comparison of Environmental Conditions and Insulation Effect between Air Inflated and Conventional Double Layer Greenhouse (공기주입 및 관행 이중피복온실의 재배환경 및 단열성능 비교)

  • Jayasekara, Shanika N.;Na, Wook H.;Owolabi, Abdulhameed B.;Lee, Jong W.;Rasheed, Adnan;Kim, Hyeon T.;Lee, Hyun W.
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study was conducted to determine which greenhouse provided good environmental conditions for strawberry production, and performed better at conserving energy. Temperature, RH, VPD, $CO_2$, solar radiation, yield, and fuel consumption were the parameters analyzed. The temperatures of both greenhouses were well controlled in order to provide optimal day and night temperatures for strawberry production. The air inflated double layer greenhouse had higher RH values (more than 90% at night), which led to higher disease occurrence, in comparison to the conventional double layer greenhouse. Furthermore, the air inflated double layer greenhouse had lower VPD values than the conventional double layer greenhouse. Therefore, better RH and VPD were observed in the conventional double layer greenhouse. Higher $CO_2$ concentration was observed in the air inflated double layer greenhouse while the conventional double layer greenhouse ventilated better than the air inflated greenhouse, because of its side ventilators. Moreover, higher solar radiation in the conventional double layer greenhouse resulted in higher yield, in comparison to the air inflated double layer greenhouse. Thus, we can conclude that the conventional double layer greenhouse provided a better environment for crop growth, in comparison to the air inflated double layer greenhouse. Regarding fuel consumption, the air inflated double layer greenhouse had lower fuel consumption than the conventional double layer greenhouse. Therefore, from an energy consumption point of view, we can conclude that the air inflated double layer greenhouse performed better than the conventional double layer greenhouse.

Computer Analysis of Mathematical Model for Engine Control (엔진제어를 위한 수학적 모델의 컴퓨터 해석)

  • 김유남;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.724-732
    • /
    • 1989
  • The structure of engine and its interaction are investigated and the construction of mathematical model for the performance evaluation is presented and then simulated. The total system is classified as air-fuel inlet element, intake manifold, combustion, and engine dynamics and their control function are schematically evaluated. Because of the model structure with general engine function and computer simulation of the chosen engine, physical characteristics of the corresponding engine and the engine data of normal operation state are used. According to the study, it is possible to predict the mixture rate by by the difference in the mass of fuel and air into cylinder and to evaluate and trace dynamic characteristic of operation state under various operating condition. The model characteristic under the transient operating condition makes it possible to effectively evaluate the operation of actual engine through the result of simulation.

  • PDF

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

A Study on Pilots' Behavior on Decision of Maneuvering Aircraft for Fuel Efficient Flight Operation

  • Yoo, Kwang Eui;Jeon, Seung Joon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.96-104
    • /
    • 2019
  • The response to climate change of international air transport industry might be initiated by ICAO's CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation) which will impact on international airlines' flight operation behavior in the future. Though the airlines' efforts to reduce fuel consumption has been a major issue in economics of aviation industry, the improvement of fuel efficiency in flight operation will have additional impact on their profitability by introducing carbon emission cost. The fuel consumption in flight operation will be somewhat influenced by pilots' technical action for maneuvering aircraft during flight operation. This study will investigate pilots' behavior on decision for tactical aircraft control for mission flight. The data will be collected by the survey through sample pilots asking about their intention and perception on fuel savings during flight operations. The data will be analyzed by AHP process and the study will find out the elements and factors influencing pilots' behavior on technical decision of flight and their weights on fuel saving effects.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

Research of Efficient Environmental Policy Instruments for the Reduction of SO2-Emissions from Stationary Sources (고정오염원에서 발생하는 SO2 배출량 저감을 위한 효율적인 환경정책수단의 연구)

  • Lee, Yeong Jun
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 2004
  • This paper asks the question: what choice of environmental policy instruments is efficient to reduce sulfur dioxide from stationary sources\ulcorner: In Korea, command and control has been a common way of controlling $SO_2-emissions.$ When compared to the non-incentive environmental policy instrument such as command and control, economic incentive environmental policy instrument has been the advantage of making polluter himself flexibly deals with in marginal abatement cost to develop environmental technology in the long view. Therefore, the application possibility of the incentive environmental policy instrument was studied in this research to realize the countermeasure for controlling of $SO_2-emissions.$ As a result, enforcement of the countermeasure such as flue gas desulfurizer by command and control would be suitable because power generation is performed by the public or for the public in source of air pollution and thus, economic principle is not applied to the polluter. In the source of industrial pollution, enforcement of fuel tax is found to be suitable for the countermeasure for the use of low sulfur oil in terms of the flexibility of demand for the price in the long tenn. For the permissible air pollution standards applicable to all air pollutant emitting facilities, enforcement of incentive environmental policy such as bubble, off-set, banking policy or tradeable emission penn its would be ideal in long terms according to the regional characteristics and the number and scale of air pollutant emitting facilities.

Visualization of the Icing at LPLi Engine Injector and the Effect of the Inflow of Ice Particle into Cylinder on the Combustion and the Exhaust Gas (LPLi 엔진 인젝터의 결빙조각 형성이 연소 및 배기가스에 미치는 영향)

  • 박정철;김우석;이종화;이병옥;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • As air pollution has become an important issue across the world, studies of clean fuel are on going to reduce combustion emissions. One example is development of the LPLi(Liquefied Phase LPG injection) engine. Some problems are occurred during development. One of the problems is icing phenomenon at injector tip due to evaporation potential heat when liquid LPG is injected. If the Icing is raised at injector tip or injector inserting hole, it disturbs fuel injection. And if the ice particles are inducted into cylinder, it brings problems associated with control of emission and air/fuel ratio. In order to solve the problems, a rig system was set up and observed Icing of injector tip. Engine test was carried out for visualization of injector tip icing and its effects on combustion and emissions.

Effect of air flow channel configuration on performance of direct methanol fuel cells. (공기극 채널 형상이 직접 메탄올 연료전지의 성능에 미치는 영향)

  • Hwang, Yong-Sheen;Choi, Hoon;Cha, Suk-Won;Lee, Dae-Young;Kim, Seo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.137-140
    • /
    • 2007
  • We consider the optimum air flow channel design for DMFC's in the present study. The effect of pressure drop across the inlet and outlet of a stack on the performance of a DMFC is the optimization of such geometric parameters is crucial to minimize the parasitic power usage by the auxiliary devices such as fuel pumps and blowers. In this paper, we present how the pressure drop control can optimize the driving point of a DMFC stack. Further, we show how the optimal fuel utilization ratio can be achieved, not degrading the performance of DMFC stacks. Overall, we discuss how the flow channel design affects the selection of balance of plant(BOP) components, the design of DMFC systems and the system efficiency.

  • PDF