• Title/Summary/Keyword: Air/Ground Temperatures

Search Result 76, Processing Time 0.027 seconds

Effect of Soil Temperatures on Seedling Emergence in Direct Seeding on Dry Paddy (벼 건답직파에서 파종기 지온이 출아에 미치는 영향)

  • Soh, Chang-Ho;Yun, Jin-Il;Rho, Yeong-Deok;Kim, Moo-Sung;Kwon, Shin-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.580-586
    • /
    • 1995
  • Soil temperatures at depths of 1~5cm are important to the germination and emergence of dry seeded-rice. An automated weather station was used to monitor the hourly weather parameters at Experiment Farm, Kyung Hee University from April 21 to May 30 in 1994. The data was analyzed to figure out the 24-hour temporal changes in air 1.5m above ground and soil temperatures under ground of 0, 2.5, 5, 10 and 20cm. The fluctuations of soil temperature were greatest at the soil surface and decreased with increasing depth. Mean soil temperatures at depth of 2.5cm were about 3$^{\circ}C$ higher than mean air temperatures during the observation period. Although mean soil temperatures at depth of 2.5cm during 10 or 15 days after April 21, May 1 and May 11 showed almost same temperatures, the distribution patterns of temperature regime were different from each other. Rice cultivars, Hwasung, Seohae, Nampung, IR60 and CR155, were seeded at depth of 2.5cm on April 21, May 1 and May 11, respectively. The periods of seedling emergence(PSE) varied in accordance with cultivars and seeding dates. PSE was correlated with accumulated daily mean air temperatures and accumulated hours classified by temperature regimes.

  • PDF

Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes (방울토마토에서 잎 표면온도를 적용한 아메리카잎굴파리(Liriomyza trifolii) 개체군 밀도변동 모형작성 및 평가)

  • Park, Jung-Joon;Mo, Hyoung-Ho;Lee, Doo-Hyung;Shin, Key-Il;Cho, Ki-Jong
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • Population dynamics of the American serpentine leafminer, Liriomyza trifolii (Burgess), were observed and modeled in order to compare the effects of air and tomato leaf temperatures inside a greenhouse using DYMEX model builder and simulator (pre-programed module based simulation programs developed by CSIRO, Australia). The DYMEX model simulator consisted of a series of modules with the parameters of temperature dependent development and oviposition models of L. trifolii were incorporated from pre-published data. Leaf surface temperatures of cherry tomato leaves (cv. 'Koko') were monitored according to three tomato plant positions (top, > 1.8 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at the same three positions using a self-contained temperature logger. Data sets for the observed air temperature and average leaf surface temperatures were collected (top and bottom surfaces), and incorporated into the DYMEX simulator in order to compare the effects of air and leaf surface temperature on the population dynamics of L. trifolii. The initial population consisted of 50 eggs, which were laid by five female L. trifolii in early June. The number of L. trifolii larvae was counted by visual inspection of the tomato plants in order to verify the performance of DYMEX simulation. The egg, pupa, and adult stage of L. trifolii could not be counted due to its infeasible of visual inspection. A significant positive correlation between the observed and the predicted numbers of larvae was found when the leaf surface temperatures were incorporated into the DYMEX simulation (r = 0.97, p < 0.01), but no significant positive correlation was observed with air temperatures(r = 0.40, p = 0.18). This study demonstrated that the population dynamics of L. trifolii was affected greatly by the leaf temperatures, though to little discernible degree by the air temperatures, and thus the leaf surface temperature should be for a consideration in the management of L. trifolii within cherry tomato greenhouses.

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

A Numerical Analysis on Transient Fuel temperatures in a Military Aircraft under Non-operating Ground Static Condition (지상 정적 상태에서의 항공기내 연료온도변화에 대한 수치해석)

  • 김영준;김창녕
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • A numerical study was performed on the transient fuel temperatures of a military aircraft stationed under non-operating static condition. Numerical calculation was peformed by an explicit method using modified Dufort-Frankel scheme. It was assumed that the non-operating aircraft is subjected to repeated daily cycles of air temperature with the solar radiation and wind speed corresponding to the 1 % hot day ambient condition. And, the aircraft was assumed to be in turbulent flow. The convective heat transfer coefficient for turbulent flow on the flat plate suggested by Eckert was employed to calculate heat transfer between the aircraft surface and the ambience. The energy conservation equation on fuel was used as governing equation for this analysis. As a result of this analysis, the wing tank temperature showed the highest temperature and the largest rate of temperature changes among fuel tanks. The results of this analysis could be used as initial foe] temperatures for analysis of the transient fuel temperatures in various flight missions. Also, this analysis method could be used to analysis and design of an aircraft thermal energy management system.

Nocturnal temperature distribution on orange orchards in Cheju Island (II) (제주도 감귤 과수원의 야간 기온 분포(II))

  • ;;Lee, Seung-Ho;Lee, Hyong-Young
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.230-241
    • /
    • 1995
  • The Characteristics of nocturnal temperature fields were analyzed to understand the factors of freezing-and-cold damages on orange orchards in Cheju Island. Temperatures were measured from January 7th through 27, 1995 at 25 sites in an area of 1x1.25$ extrm{km}^2$, Wasan-ri, Chochon-up, Pukcheju-kun located on the northeastern slope of Mt.Hanla. Several other weather elements such as wind and cloud were observed as supplementary data. Surface weather maps were also analyzed to clarify the influence of prevailing pressure patterns on the temperature fields. The vertical temperature profiles were obtained at the height from the ground up to 360 cm in 30 cm intervals at site 3, a frost hollow, and site 10 on the upper slope. The results show that freezing damages occured in the hollows, terrain depressions, rather than at the upper slope due to nocturnal radiation cooling as well as accumulation of cold airflow from Mt.Hanla. Windbreaks of densely planted Japanese ceders with stone-walls also roled as obstacles to the cold airflow in nights with Clear skies and light winds. The maximum intensity of temperature inversion in hollows, quasi-cold air lake, was 3.1$^{\circ}C$. Cold air from Mt.Hanla was trapped in the depressions up to a height of 90cm forming frost pocket. Man-made facilities such as shelterbelt or stone-wall which are built to prevent the penetration of cold north-westeries in winter aggravated the cold damage. The differance of daily minimum temperatures between before and behind shelterbelts was 2.$0^{\circ}C$. The man-made convection by smudgin which raised the temperatures up to 3.8$^{\circ}C$ can reduce the cold damage in the hellows.

  • PDF

Geothermal Effects on the Underground Water Conveyance Pipe System from Han River (한강수계 광역상수도 원수관의 지열 영향 조사)

  • Cho, Yong;Park, Jin-Hoon;Park, Tae Jin;Kim, Youngjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.2-171.2
    • /
    • 2010
  • Geothermal effects on the underground water conveyance pipe system have been investigated through the multiregional water supply system from Paldang water intake station. To make an investigation of raw water thermal energy, temperature sensors are installed the surface of the pipes of metropolitan area water supply system. In 2009 winter and early spring seasons, the monthly averaged temperatures at Paldang 2 intake stations are $1.94^{\circ}C$ in February, $4.96^{\circ}C$ in March, and $10.56^{\circ}C$ in April. After the transfer in 26.0 km distance of tunnel and buried pipe, the raw water temperatures are raised to $3.13^{\circ}C$, $6.04^{\circ}C$, and $11.39^{\circ}C$ respectively. As the temperature difference between the raw water and the air reduces, the temperature increasement is reduced by $1.19^{\circ}C$ in Feb., $1.08^{\circ}C$ in Mar., and $0.83^{\circ}C$ in Apr. Since the flowrate is over 1,150,000 $m^3$/day, it is estimated that the water exchanges a huge amount of heat over 1.0 Tcal a day with the ground.

  • PDF

Development of an Integrated Sensor Module for Terrain Recognition at Disaster Sites (재난재해 현장의 지형인지를 위한 통합 센서 모듈 개발)

  • Seo, Myoung Kook;Yoon, Bok Joong;Shin, Hee Young;Lee, Kyong Jun
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.9-14
    • /
    • 2020
  • A special purpose machine with two manipulators and quadruped crawler system is being developed to work at disaster sites where it is intended to quickly respond in the initial stages after the event. In this study, a terrain recognition module is developed so that the above special purpose machine can quickly obtain ground information to help choose its path while recognizing objects in its way, this is intended to enhance the remote driver's limited situational awareness. Terrain recognition modules were developed for two tasks (real-time path guidance, precision terrain measurements). The real-time path guidance analyzes terrain and obstacles while moving, while the precision terrain measurement feature provides more accurate terrain information by precisely measuring the ground in front of the vehicle while stationary. In this study, an air-cooled sensor protection module was developed so that the terrain recognition module can continue its vital tasks in the event of exposure to foreign substances, including scattered dust, mist and rainfall, as well as high temperatures.

Anion Distribution and Correlation Analysis by Fountain Type in Urban (도심지내 분수유형별 음이온 분포 및 상관성 분석)

  • Kim, Jeong-Ho;Park, Seung-Hwan;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1599-1610
    • /
    • 2013
  • In order to verify the healing effect in the variety of effects according to fountain type, anion which is the representatives factor of healing, as the center of case studies which in Gwanghwamun(Ground fountain), Cheonggyecheon(Waterfall) and Myeongdong(Formative fountain). According to fountain type, the anion distribution as follow, figures typically$ 15,721{\pm}419ea/cm^3$, Formative fountain $40,190{\pm}788ea/cm^3$, Waterfall $4.480{\pm}290ea/cm^3$ and ground fountain $2.492{\pm}180ea/cm^3$. It is usually exceed to the distribution in natural green, which is $1070{\sim}2100ea/cm^3$. The interrelation between air temperature, relative humidity, wind speed and relative humidity, and wind speed is that, the relative humidity is directly proportional to wind speed and inversely proportional to temperature. As the temperature goes up, the distribution of anion goes down. And as the wind speed and relative humidity goes up, the distribution of anion decrease sharply. The result of interrelation between fountain type and the anion distribution is that, the distance of water falling is directly proportional to the anion distribution in the formative fountain and inversely proportional in the ground fountain. And the distribution of anion is largest in formative fountain. The distribution of anion in ground fountain is lower than in formative fountain, but it is far more than in natural greenery. And as the distance from fountain increase, the distribution of anion goes down.

Small-Scale Dynamics of Moths in Spring from a Coniferous Forest of Southwestern Korea

  • Choi, Sei-Woong;An, Jeong-Seop
    • Journal of Ecology and Environment
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The small-scale dynamic of moth populations in spring was examined in a coniferous forest of southwestern Korea. Moths were collected with one 22-watt light trap for 29 days in April 2007. A total of 450 individuals of 38 species in 5 families were collected. The most abundant species was an epiplemid moth, Epiplema plagifera. The relationship between these dominant moths and their host plants is briefly discussed. We also examined influence of weather factors on the number of species and individuals collected. Multiple regression analyses showed that the two-day temperature difference explained 18% of the variance in the number of species collected, while air and ground temperatures explained 51% of the variance in the log-transformed number of individuals collected. This suggests that temperature affects local population sizes in spring, but variables other than weather may also affect the diversity of local moth populations.

Properties of Wollastonite-Reinforced Glass-Ceramics Made from Waste Automobile Glass and Waste Shell

  • Yun, Yeon-Hum;Yoon, Chung-Han;Kim, Chi-Kyun;Hwang, Kyu-Seog
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.54-58
    • /
    • 2004
  • Wollastonite-type glass ceramics were prepared by milling and firing at various temperatures using an automobile waste glass and waste shell as starting materials. Powder mixture ground by disk-type ball mill for 3 hours was pressed into a disk. The pressed specimen was fired at $850^{\circ}C$,$950^{\circ}C$ and $1050^{\circ}C$ for 1 hour in air. From FE-SEM observation, with an increase of the firing temperature from $850^{\circ}C$ to $1050^{\circ}C$, whisker-type phase was grown to about 10 $\mu\textrm{m}$ in length. Specimen fired at $1050^{\circ}C$ showed the formation of well-crystallized whisker-type wollastonite grains and the highest compressive strength.