• Title/Summary/Keyword: Agrobacterium sp. ATCC31750

Search Result 4, Processing Time 0.016 seconds

Identification of Key beta-1,3-glucan Synthesis Enzymes in Agrobacterium sp. ATCC31750 (Agrobacterium sp. ATCC31750에 대한 beta-l,3-glucan 합성 대사경로의 주요 단백질 검출)

  • Kim Ryo Hwa;Lee Jung Heon
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.406-409
    • /
    • 2004
  • Matrix Assisted Laser Desorption ionization Time of Flight (MALDI-TOF) was used for enzymes identification related to B -1,3-glucan synthesis. Agrobacterium sp. ATCC31750 was cultivated with two stage Continuous Stirrer Tank Reactor (CSTR) and the cells were harvested and their protein profiles were analysed by two dimensional electrophoresis. The specific enzyme spot was treated with trypsin and ana lysed by MALDI-TOF to get peptide molecular weight. The peptide molecular weights were matched with Agrobacterium tumefacience's Data Base from the matrix science site, then could identify the avaliable key enzymes. In this study, we identified key metabolite of synthesis of beta-1,3-glucan, such as glucose-6-phosphate isomerase, phosphoglucomutase, B-1,3-glucan synthase and glucokinase, and we also identified uracil phosphoribocyl transferase and Ribosome recycling factor also.

Agrobacterium sp. ATCC 31750의 고농도 세포배양

  • Jang, Jeong-Gyun;Cha, Wol-Seok;Gang, Si-Hyeong;Park, Jae-Eok;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.245-246
    • /
    • 2000
  • Agrobacterium sp. ATCC 31750( formerly Alcaligenes faecalis subsp myxogenes) was used to produce curdlan. Since the curdlan is secondary metabolite, it is important for curdlan production to increase cell concentration. The fedbatch operation was used to increase cell concentration with addition of carbon and nitrogen sources. When the initial sucrose concentration was 20g/L, it was consumed in 24 hrs and the cell concentration was 6g/L in a batch culture. The sucrose solution(200g/L) was fed to control the sucrose concentration above 10g/L.

  • PDF

Fermentation and Proteomic analysis of E. coli mutant FC which produced soluble glucan

  • Kim, Ji-Yong;Jin, Li-Hua;Kim, Jung-Kyu;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.668-671
    • /
    • 2005
  • In this study, the full gene of the putative ${\beta}-1,3-glucan$ synthase catalytic subunit(gi:40556679) in Agrobacteriujm sp. ATCC31750 was cloned into E. coli BL21(DE). We found that putative ${\beta}-1,3-glucan$ synthase catalytic subunit full gene mutant(E. coli mutant FC) produced soluble glucan.instead of curdlan(insoluble glucan).

  • PDF

Development of Soluble Glucan Production Process with Continuous Stirred Tank Fermentor (연속 발효조를 이용한 soluble glucan 생산 공정 개발)

  • Moon, Chan-Jun;Lee, Jung-Heon
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.938-941
    • /
    • 2006
  • Continuous fermentation process for the production of soluble glucan using mutant Agrobacterium sp. ATCC31750 has been developed in this research. When the concentration of soluble glucan was higher than 6 g/l, the viscosity of the fermented broth was too high and it needs complex separation process to separate from culture broth. Mathematical models which describe the cell growth and glucan production was developed and they kinetic parameters were estimated with experimental data. They are used for the optimization of continuous fermentation process and calculate optimal dilution rate for easy separation of glucan 4 g/l. With continuous fermentation, glucan production rate was increased 1.8 times more than that with batch fermentation.