• Title/Summary/Keyword: Agrimonolide

Search Result 3, Processing Time 0.022 seconds

An Isocoumarin with Hepatoprotective Activity in Hep G2 and Primary Hepatocytes from Agrimania pilosa

  • Park, Eun-Jeon;Oh, Hyun-Cheol;Kang, Tai-Hyun;Sohn, Dong-Hwan;Kim, Youn-Chul
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.944-946
    • /
    • 2004
  • Phytochemical investigation of the aqueous extract of ~he roots of Agrimania pilosa Ledeb. (Rosaceae), as guided by hepatoprotective activity in vitro, furnished two isocoumarins, agri-monolide (1) and agrimonolide 6-O-$\beta$-D-glucoside (3), and (+)-catechin (2). Compound 1 showed hepatoprotective effects on both tacrine-induced cytotoxicity in human liver-derived Hep G2 cells and tert-butyl hydroperoxide-induced cytotoxicity in rat primary hepatocytes with EC$_{50}$ values of 88.2$\pm$2.8 and 37.7$\pm$1.6 $\mu$M, respectively.y.

Chemical Constituents from Agrimonia pilosa with Inhibitory Activity against Interleukin 1β Production via NLRP3 and NLRC4 Inflammasomes

  • Nhoek, Piseth;Chae, Hee-Sung;An, Chae-Yeong;Pel, Pisey;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • Bioactivity-guided fractionation by preliminary screening using interleukin-1β production in lipopolysaccharides (LPS)-induced J774A.1 cell line led to the isolation of fourteen structures including chromone, isocoumarins, flavanoids, and triterpenes from the aerial part of Agrimonia pilosa Ledeb. All structures were determined by measuring their spectroscopic data and comparing their spectroscopic data with the literatures. All the isolates were tested for their inhibitory activities against interleukin-1β production in LPS-induced J774A.1 cell. Of the tested compounds, (S)-(+)-5,7-dihydroxy-2-(1-methylpropyl)chromone (1), agrimonolide-6-O-β-D-glucopyranoside (5), agrimonolide-6-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (6), and catechin (10) were found to be active. Furthermore, compound 1 suppressed the protein expressions of NLRP3 and NLRC4 in murine macrophage.

Anti-inflammatory Metabolites of Agrimonia pilosa Ledeb. and Their Mechanism

  • Park, Mi Jin;Ryu, Da Hye;Cho, Jwa Yeoung;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.13-13
    • /
    • 2018
  • The anti-inflammatory (INF) compounds (1-15) were isolated from Agrimonia pilosa Ledeb. (APL) by activity-guided isolation technique. The isolated compounds (1-15) were identified as quercetin-7-O-rhanmoside (1), apigenin-7-O-glycoside (2), kaempferol-7-O-glycoside (3), apigenin-7-O-[6"-(butyl)-glycoside] (4), querceitn (5), kaempferol (6), apigenin (7), apigenin-7-O-[6"-(pentyl)-glycoside] (8), agrimonolide (9), agrimonolide-6-O-glucoside (10), desmethylagrimonolide (11), desmethylagrimonolide-6-O-glucoside (12), luteolin (13), vitexin (14) and isovitexin (15). Flavonoids, compound 2, 3, 11, and 14-15 have been found in APL for the first time. Furthermore, two novel flavone derivatives, compound 4 and 8, have been isolated inceptively in plant. In the no cytotoxicity concentration ranges of $0-20{\mu}M$, nitric oxide (NO) production level of 1-15 was estimated in LPS-treated Raw 264.7 macrophage cells. The flavone aglycones, 7 (apigenin, $IC_{50}=3.69{\pm}0.34{\mu}M$), 13 (luteolin, $IC_{50}=4.62{\pm}0.43{\mu}M$), 6 (kaempferol, $IC_{50}=14.43{\pm}0.23{\mu}M$) and 5 (quercetin, $IC_{50}=19.50{\pm}1.71{\mu}M$), exhibited excellent NO inhibitory (NOI) activity in dose-dependent manner. In the structure activity relationship (SAR) study of apigenin-derivatives (APD), apigenin; Api, apigenin-7-O-glucoside; Api-G, apignenin-7-O-[6"-(butyl)-glycoside]; Api-BG and apignenin-7-O-[6"-(pentyl)-glycoside]; Api-P, from APL on INF activity was investigated. The INF mediators level such as NO, INF-cytokines, NF-KB proteins, iNOS and COX-2 were sharply increased in Raw 264.7 cells by LPS. When pretreatment with APD in INF induced macrophages, NOI activity of Api was most effective than other APD with $IC_{50}$ values of $3.69{\pm}0.77{\mu}M$. And the NOI activity was declined in the following order: Api-BG ($IC_{50}=8.91{\pm}1.18{\mu}M$), Api-PG ($IC_{50}=13.52{\pm}0.85{\mu}M$) and API-G ($IC_{50}=17.30{\pm}0.66{\mu}M$). The NOI activity of two novel compounds, Api-PG and Api-BG were lower than their aglycone; Api, but more effective than Api-G (NOI: Api-PG and Api-BG). And their suppression ability on INF cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA showed the similar tendency. Therefore, the anti-INF mechanism study of Api-PG and Api-BG on nuclear factor-kappa B ($NF-{\kappa}B$) pathway, representative INF mechanism, was investigated and Api was used as positive control. Api-BF was more effectively prevent the than phosphorylation of $pI{\kappa}B$ kinase (p-IKK) and p65 than Api-PG in Raw 264.7 cells. In contrast, Api-PG and Api-BG were not reduced the phosphorylation of inhibitor of kappa B alpha ($I{\kappa}B{\alpha}$). Moreover, pretreatment with Api-PG and Api-BG, dose-dependently inhibited LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNAs and proteins in macrophage cells, and their expression were correlated with their NOI activity. Therefore, APL can be utilized to health promote agent associated with their AIN metabolites.

  • PDF