• Title/Summary/Keyword: Agricultural water requirement

Search Result 131, Processing Time 0.032 seconds

Analysis of Storage Requirement of an Agricultural Reservoir in Chungcheongnam-do Province Using MM5 (MM5를 이용한 충청남도지역 농업용저수지 필요저수량 변화 분석)

  • Yun, Dong-Koun;Chung, Sang-Ok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1862-1866
    • /
    • 2010
  • 기후변화에 관한 정부간 협의체(International Panel on Climate Change, IPCC) 4차 보고서에는 21세기말 지구의 평균기온이 최대 $6.4^{\circ}C$ 까지 더 상승할 것으로 전망하였다(IPCC, 2007). 지구의 평균온도는 지난 100년 동안 $0.74^{\circ}C$ 상승하였으며 그중 0.45%는 최근 25년간 상승한 것이며 이것은 지난 100년 보다 2.4배나 빠르게 상승하고 있는 추세이다. 우리나라의 경우 기온이 전 지구평균기온에 비해 2배 이상 높은 $1.5^{\circ}C$정도 상승 하였다. 또한 온실가스 증가 속도는 다른 나라에 비해 빠르게 진행되고 있으며, 1990년에서 지난 2001년간 다른 OECD국가들과 비교했을 때 가장 빠르게 증가하고 있을 뿐 아니라($CO_2$배출량은 OECD국가 중 10위) 현재와 같은 에너지 다소비형 산업구조와 소비패턴으로는 온실가스 배출량이 감소할 가능성은 낮은 것으로 분석된다. 따라서 우리나라의 경우 다른 국가에 비하여 기후변화에 취약한 위치에 있고 민감하게 반응함에 따라 미래 기후변화에 대한 영향은 우리나라 농업수자원에 큰 영향을 미칠 것으로 판단된다. 본 연구에서는 기상청에서 제공하는 MM5 기상자료를 이용하여 농업용저수지 필요저수량 변화를 예측하였다. MM5 기상자료는 충남 서산관측소 과거 관측자료를 이용하여 편의보정을 거쳐 재추출하였다. 생성된 자료는 물수지분석 입력 자료로 구축하여 충남에 위치한 고풍저수지에 대하여 필요저수량변화를 예측하였다. 그 결과 기온상승으로 인한 실재증발산량은 676mm에서 717mm로 41mm가 증가하였으며, 소비수량 또한 1,617mm에서 1,659mm로 42mm 증가하였다. 유효우량은 2020s는 520mm 이였으나 2080s는 533mm으로 13mm 증가한 것으로 분석되었다. 본 자료를 이용하여 고풍저수지의 필요저수량을 분석한 결과 2020s, 2050s, 2080s 각각 31.2%(3,538.9천$m^3$), 16.0%(1,489.7천$m^3$), 26.6%(2,834.5천$m^3$)가 부족한 것으로 예측되었다. 이는 강우량은 증가하나 기준년도에 비하여 5월 8월이 낮게 예측된 것이 가장 큰 원인으로 분석되었다. 따라서 소비수량은 증가하지만 유효유량의 부족으로 필요저수량이 부족한 것으로 예측되었다.

  • PDF

Topdressing method of Potassium for the better efficiency in rice (수도(水稻) 가리시비(加里施肥) 효율향상(効率向上)을 위(爲)한 추비방법(追肥方法))

  • Oh, Wang Keun;Ryu, In Soo;Park, Hoon;Kim, Woo In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.199-217
    • /
    • 1975
  • For the establishment of efficient method of potassium topdressing on rice the optimum time and amount were investigated and discussed on the basis of available data from nutriophysiological studies, soil characteristics and fertilizer trials in fields. The followings were pointed out. 1. According to yield rice plants require more potassium around heading under water culture. 2. Potassium involves in harvest index, filled grain ratio, grain weight and number of spikelets per panicle. 3. Potassium is lost after heading in most fields in spite of highest requirement during this period. 4. The higher $K_2O/N$ ratio in straw at harvest is, the higher the yield. 5. Relatively low efficiency of potassium fertilizer under the field condition may be due to improper application method rather than natural supply from soil and irrigation water. 6. Appropriate topdressing time appears at in effective tillering stage for the prevention of nitrogen excess and at 15 to 20 days after transplanting, ear formation stage and 5 days after heading for the prevention of soil reduction damage. Two times of topdressing for clayey soil and three times for sandy soil seems reasonable in practice together with nitrogen topdressing, 7. The reasonable ratio basal to topdressing of potassium fertlizer seems to be 2/3 and $N/K_2O$ ratio of fertilization for ear formation stage appeared also as 2/3.

  • PDF

The Effects of Subsoiling at Different Depths and Spacings on Physical Properties of Soil and Rice Yields (심토파쇄(深土破碎) 깊이와 간격(間隔)이 토양(土壤)의 물리성(物理性)과 수도수량(水稻收量)에 미치는 영향(影響))

  • Min, Kyeong-Beom;Kim, Jai-Jong;Cho, Seong-Jin;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.228-234
    • /
    • 1983
  • The effects of subsoiling on improving soil physical properties for increasing yield of rice were studied at different depths and spacings in a clay loam paddy soils. The results are summarized as follows : 1. Working efficiencies of subsoiling at depth 50cm were lower than those at depth 30cm by tractor, while subsoiling ratios at depth 50cm were higher than those at depth 30cm. 2. During cultivation period, water requirement in 50cm depth subsoiling was higher than that in 30cm depth subsoiling. Water requirement in the central part was more rapid about 1.0-2.0mm/day than in the middle between two neighbouring central points. 3. Soil physical properties such as hardness, bulk density and porosity were significantly improved by subsoiling and the subsoiling effects have been continued until the second year. Negative correlations between yield and bulk density or hardness of subsoil were observed. 4. A lograrithmic function was observed between rice yield ($\hat{Y}$) and subsoiling ratio(X) at depth of 20cm. The optimum space for subsoiling in 30 and 50cm depth. was 80 and 120cm, respectively.

  • PDF

Effect of Water Management and Lime Application on the Growth and Copper Uptake of Paddy Rice (수도(水稻)의 동피해(銅被害)에 대한 물관리(管理) 및 석회물질(石灰物質)의 효과(效果))

  • Kim, Kyu-Sik;Kim, Bok-Young;Lee, Min-Hyo;Han, Ki-Hak;Kim, Maun-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1985
  • A pot experiment was conducted to find out the effects of water management, slaked lime and wollastonite on growth and Cu uptake of rice at Cu added soil. The soil was adjusted to 0, 50, 100 and 200 ppm concentration of Cu. The application amount of slaked lime was the lime requirement plus 150 ㎏/l0a and wollastonite 200 ㎏/10a, respectively. The copper concentration in soil which reduced yield significantly was 133.1 ppm for submersion and 136.8 ppm for intermittent irrigation. The application of lime and wollastonite reduced Cu content in brown rice as well as increased rice yields compared to that of no lime. The copper content in plant was increased with increasing soil Cu concentration, however, reduced with submersion and application of slaked lime, and increased with increasing the ratio of Cu/Ca+Mg equivalent in soil.

  • PDF

Features and Socio-Economic Background of Farmland Consolidation Project during the 1930s and 1940s in Korea (1930~40년대 경지정리사업의 특징과 사회⋅경제적 배경)

  • Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.85-96
    • /
    • 2022
  • The study is aimed to investigate the features and socio-economic background of farmland consolidation project with medium-sized paddy plot at irrigation associations during the Japanese colonial period in Korea. Most of farmland consolidation works in the 1940s was composed of independent irrigation and drainage ditches along the short side of field plot. However, the number of farm roads at farmland consolidation zone was much smaller than number of irrigation ditches to decrease reduction in farmland area. The standard field plot was medium-sized (about 20-40 ares) in Korea but small-sized (about 10 ares) in Japan in this period. As the result of farmland consolidation works, the unit water requirement was increased to 0.0035 m3/s/ha, and the unit area drainage discharge was over 2.0 m3/s/km2 in many cases. The farmland consolidation with medium-sized plot have been spread under the colonial landlord system, where major landlords occupied a large share of farmland and managed corporate farming to gain more benefit. The reasons for spread of farmland consolidation with medium-sized plot may be as follows: high net profit ratio, an increase in land price, and labor savings in rice farming. The farmland consolidation with medium-sized plot in the colonial period showed intermediate features between the farm consolidation with small-sized plot for an increase in land productivity in Japan and the farm consolidation with medium-sized plot for an increase in labor productivity after the 1960s.

A Study on Efficient Utilization of Power-Tiller Engines (동력경운기(動力耕耘機) 기관(機関)의 효율적(效率的) 이용(利用)에 관한 연구(硏究))

  • Ryu, Kwan Hee;Park, Keum Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 1984
  • The engines mounted on power-tillers are used as power source in various kinds of works such as plowing, harrowing, transporting, spraying, water pumping and threshing, etc. But the engines have not been used effectively from a standpoint of fuel consumption because of lack of proper power transmission system and lack of understanding of fuel consumption characteristics of the engines. Therefore, this study was attempted to establish proper power transmission system between the power-tiller engines and various implements. In order to accomplish the above objective, firstly, power requirement and pulley sizes for various implements, which are driven by the power-tiller engines, were investigated to find out whether the power transmission system is proper. Secondly, partload variable engine-speed test was conducted for 3 different sizes of diesel engines to measure to specific fuel consumption. Thirdly, the present power transmission systems were analyzed in terms of specific fuel consumption, and proper power transmission systems were suggested for various implements. The results of this study are summarized as follows: 1. Power requirement for each fixed-type implement of power-tiller varied from 1.5 ps to 11 ps according to its type and operating conditions, but generally in the range of 2.5 ps to 7 ps. 2. Each power tiller and implement were equipped with only one size of pully with few exeptions. With the present power transmission systems, the engines can't be utilized effectively in terms of fuel economy. The pulley size of engine or implement should be diversified to provide the optimum engine speed for different implements. 3. For a diesel eninge with the rated power output of 6 ps, the optimum engine speed to minimize specific fuel consumption was 2200 rpm for the power reguirement in the range of 6 ps or more, 1700 rpm in the range of 4 to 6 ps, and 1200 rpm in the range of 4 ps or less. 4. For a diesel engine with the rated power output of 8 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 7 ps or more, 1700 rpm in the range of 4.8 to 7 ps, and 1200 rpm in the range of 4.8 ps or less. 5. For a diesel engine with the rated power output of 10 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 8.4 ps or more, 1700 rpm in the range of 5.4 ps to 8.4 ps, and 1200 rpm in thr range of 5.4 ps or less. 6. Provided the existing implements are dirven by 8 ps diesel engines, the optimum size of engine pulley should be larger than 120mm for the works of requiring less than 4 ps and 90-110mm for the works requiring 4.5-6.5 ps in order to minimize fuel consumption.

  • PDF

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

Estimation on an Amount of the Groundwater Demand and Supply for Applying the Well-network System (WNS) to a Frequent-drought Area (관정연계이용 기술 적용을 위한 상습가뭄지역 지하수 수요-공급량 평가)

  • Lee, Byung Sun;Jeong, Chanduck;Lee, Gyusang;Ha, Kyoochul;Lee, Jong-Hwa;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.24-35
    • /
    • 2022
  • This study was conducted to estimate groundwater demand and supply for agricultural activities in a frequent-drought area that requires implementation of optimal distribution plan utilizing the well-network system (WNS). The WNS has been considered as a viable strategic way of supplying groundwater to farmlands by connecting groundwater wells physically or virtually. The study area heavily relied on groundwater resources for irrigation up to 53% due to a lack of surface water resources. Two kinds of methods, HOMWRS software and FAO approach, were used for estimating irrigation water requirements for paddy and upland fields, respectively. During the latest 10 years (2010~2019), the water requirements was estimated to be 1,106 m3/day. The requirements notably increased to 1,121~4,004 m3/day during active farming season (May to September), which exceeded the total yield capacity of pre-existing groundwater wells (2,356 m3/day) in the area. Detailed and definite determination for groundwater demand and supply helped to determine optimal scale parameters of WNS. The WNS has achieved more balanced distribution of groundwater resources for irrigation over the study area.

Assessment of climate change impacts on uncertainty and sensitivity of paddy water requirement in South Korea using multi-GCMs (Multi-GCMs을 활용한 논벼 필요수량의 불확성 및 민감도 기후영향평가)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Yoon, Kwangsik;Choi, Dongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.516-516
    • /
    • 2016
  • 기후변화는 농업생산량 감소와 식량 안보 문제와 같이 농업에 심각한 영향을 미칠 수 있다. 또한 기존의 농업수리 및 관개배수 시설 운영에 영향을 줄 수 있다. 따라서 지속가능한 농업 수자원 관리를 위해서는 기후변화의 영향을 고려한 장기적인 계획 수립이 필요하다. 따라서 본 연구에서는 논벼 지역의 설계용수량의 확률론적 분석을 통한 논벼 필요수량 및 설계용수량에 대한 기후변화영향 평가를 실시하였다. 이를 위해서 본 연구에서는 23개 GCM의 36개 산출물을 활용하여 Multi-model ensemble 구축하였다. 먼저 GCM별 증발산량과 유효우량을 산정한 결과 중부지역에서는 IPSL-CM5A 모델의 기후변화자료를 활용할 경우 증발산량과 유효우량이 타 GCM 모델들과 비하여 크게 산정되었다. 남부지역에서는 CanESM2 모델을 적용할 경우 가장 많은 증발산량과 유효우량이 모의되는 것으로 나타났다. 이처럼 GCM별로 다양한 결과가 모의되기 때문에 농업시설 설계에 적용되는 설계용수량의 경우 안전성을 위하여 Multi-GCM models을 활용할 필요가 있다. Multi-model ensemble의 RCP 4.5와 RCP 8.5 시나리오를 적용한 결과, 모든 경우에서 1995s(1981-2014)에 비해 설계용수량은 점차적으로 증가하는 것으로 나타났다. 평균 증가율은 RCP 4.5에서 중부지역이 9.4%, 남부지역이 6.0% 증가하는 것으로 나타난 반면, RCP 8.5에서는 중부지역이 11.1%, 남부지역이 8.2% 증가하는 것으로 나타났다. 또한 여러 GCM 산출물간의 불확실성은 RCP 4.5보다는 RCP 8.5 시나리오가, 중부 지역보다는 남부 지역이, 논벼 증발산량 보다는 유효우량이 더 큰 것으로 분석되었다. 본 연구는 향후 미래 가뭄 위험성을 최소화하기 위한 농업 수자원관리 전략수립에 활용될 수 있을 것이다. 또한 본 연구결과는 기후변화 영향 평가에 있어서 적합한 GCM 자료를 선택하는데 있어, 불확실성을 가늠할 수 있는 유용한 척도로 이용될 수 있을 것으로 기대된다.

  • PDF

The Study on the Effects of the Economical Use of Irrigation Water by Different Irrgation Periods and Its Methods on the Growth, Yield and the Factors of Rice Plants. (절수의 시기 및 방법의 차이가 수도생육 수량과 기타 실용형태질 미치는 영향)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1388-1393
    • /
    • 1968
  • Higher yield in rice paddies is greatly dependent on adequately balanced and timely supply of water. A majority of rice paddy in Korea is generally irrigated by rainfall, but in many cases it has to be supplemented by artificial irrigation for optimum rice culture. Although the water requirement of rice plant is far higher than that of other crops, submerged condition of rice paddy is not necessarily required. The moisture requirement of rice plant varies with its growing stages, and it is possible to increase the irrigation efficiency through reduction of water loss due to percolation in rice paddies. An experiment was conducted on the effectiveness of economical use of water by different irrigation period and different method of cultivation. The experimental plots were set up by means of randomized block design with three duplications; (a) Alltime submerged (b) Economically controlled, and (c) Extremely controlled. Three different irrigation periods were (a) Initial stage (b) Inter-stage, and (c) last stage. The topsoil of the three plots were excavated to the depth of 30cm and then compacted with clay of 6 cm thickness. Thereafter, they were piled up with the excavated top soils, leveled and cored with clay of 6cm thickeness arround footpath in order to prevent leakage. The results obtained frome the experiments are as follows; (1) There is no difference among the three experiment plots in terms of physical and chemical contditions, soil properties, and other characteristics. (2) Colulm length and ear length are not affected by different irrigation methdos. (3) There is no difference in the mature rate and grain weight of rice for the three plots. (4) The control plot which was irrigated every three days shows an increased yield over the all the time submerged plot by 17 persent. (5) The clay lined plot whose water holding capacity was held days long, needs only to be irrigated every 7 days. (6) The clay lined plot showes an increased yield over the untreated plot; over all the time submerged plot by 18 percent, extremely controlled plot by 18 percent, and economically controled plot by 33 percent.

  • PDF