• Title/Summary/Keyword: Agricultural wastewater

Search Result 308, Processing Time 0.035 seconds

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

A Study on the Control of Stream Water Pollution Caused by Construction of the Industrial Complex in Agricultural Area (Centering around Area of chung chong Nam Do) (농공단지 조성에 따른 하천 수질관리 대책에 관한 연구 (충청남도 지역을 중심으로))

  • 양천회
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.155-160
    • /
    • 1994
  • A study of stream pollution caused by construction of the Industrial Complex in Agricultural Area of Chung Chong Nam Do were descrived here. The five main results of this studies are summerized. First, since 1988, among the companies moved in the industrial complex area, the number of electric and electronic companies have increased compared with food companies requiring much BOD. This Is very desirable to reduce the water pollution. Second, the average Biochemical Oxygen Demand(BOD) of Masan stream was the highest and it was decreased in the order of Yudug, Jo and Jungan stream. Third, although the concentration of heavy metals such as Cd and C $r^{6+}$ are not off the limit and the amount of it is small, it is desirable to introduce a chemical process to remove these metals. Fourth, since the wastewater from industrial complex area is the major factor in stream pollution, the laws associated with environmental protection should be enforced even then if the Industrial complex area with food and chemical companies produce wastewater less than 500ton/day. Fifth, it is required to improve a facilities which separete living wastewater from inderstrial wastewater In Kaya-gok and Nojang industrial complex areas.

  • PDF

Adsorption and Leaching Characteristics of the Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 흡착 및 용출 특성)

  • 윤춘경;김선주;임융호;정일민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.77-84
    • /
    • 1998
  • Adsorption and leaching characteristics of the artificial soils produced from water and wastewater treatment sludges were examined. The batch adsorption test and TCLP leaching test were used, and constituents of interest were heavy metals and nutrients. As, Cr, Cu, Pb, and Cd were analyzed for metals, and nitrogen and phosphorus were analyzed for nutrients. All the artificial soils showed strong adsorption and low leaching for the heavy metals, which implies that the artificial soils may not be hazardous to the environment due to heavy metals and even they can be utilized effectively to remove metals in solution like mine and industrial wastewaters. This is quite promising result because in most case heavy metals are the most concern in the application of sludge product to the farmland. For the nutrients, generally, artificial soils showed high adsorption and low leaching except artificial soil from wastewater sludge produced by low temperature firing. The artificial soils produced from water treatment sludge were active in adsorbing nutrients and showed low leaching that they can be practically used to remove nutrients in advanced treatment process of the wastewater. The artificial soils produced from wastewater treatment sludge were less active in adsorbing nutrients and showed high teaching. However, they could be used usefully if applied properly to the plant growing because of their fertilizing effect. Based on the test results, overall, the artificial soils were thought to be not hazardous to the environment and they could be more useful if applied properly.

  • PDF

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

Modeling Daily Streamflow in Wastewater Reused Watersheds Using System Dynamics (시스템 다이내믹스를 이용한 하수재이용 유역의 일유출량 모의)

  • Jeong, Han Seok;Seong, Choung Hyun;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.45-53
    • /
    • 2014
  • This study presents a system dynamics modeling approach to simulate daily streamflow in a watershed including wastewater treatment plant which contributes to irrigation water supply. The conceptual system dynamics model considering the complex and dynamic hydrological processes in the watershed was developed. The model was calibrated and validated each for two years based on observed flow data. Model performances in terms of $E_{NS}$, RSR, PBIAS, and $R^2$ were 0.64, 0.60, -3.6 %, and 0.64 for calibration period, and 0.66, 0.58, -2.6 %, and 0.66 for validation period, respectively, showing an applicability on generating the daily streamflow. System dynamics modeling approach could help better understand the hydrological behavior of the watershed being reused wastewater for agriculture, by providing graphical dynamics of the hydrological processes as well as conventional rainfall-runoff model results.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

  • Shi, Jianzhong;Wang, Xiuqing;Wang, Xiaoyin
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature $290^{\circ}C$, $H_2O_2$ excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.

Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island (제주지역 하수처리수의 농업용수 재이용 안전성 평가)

  • Son, Yeong Kwon;Rhee, Han-Pil;Kim, Haedo;Choi, Sun Wha;Kim, Jeong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Microbial Risk Assessment in Reclaimed Wastewater Irrigation on a Paddy Field (하수의 농업적 재이용에 따른 논 담수 내 미생물 위해성 평가)

  • Rhee, Han-Pil;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Son, Jang-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhood children. Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation. It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary wastewater irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.