• Title/Summary/Keyword: Agricultural product

Search Result 1,466, Processing Time 0.045 seconds

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Effects of the Brown Seaweed Residues Supplementation on In Vitro Fermentation and Milk Production and Composition of Lactating Dairy Cows (미역부산물 첨가가 In Vitro 발효성상과 젖소의 산유량 및 유성분에 미치는 영향)

  • Baek, I.K.;Maeng, W.J.;Lee, S.H.;Lee, H.G.;Lee, S.R.;Ha, J.K.;Lee, S.S.;Hwang, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-386
    • /
    • 2004
  • This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.

The Effects of a Fermentation Product by Aspergillus oryzae on the in vitro Digestibilities of Dry Matter, Fiber and Protein and pH in the Fermentation Fluid of Diets for Dairy Cows (착유우 사료에 대한 Aspergillus oryzae 발효물질 첨가가 in vitro 건물, 섬유소 및 단백질 소화율과 발효액의 pH에 미치는 영향)

  • Myung, Yoon-Ah;Park, Duk-Sub;Lee, Soo-Kee;Park, Jong-Soo;Kim, Yong-Kook
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.20-34
    • /
    • 2002
  • This study was conducted to examine the effects of an Aspergillus oryzae fermentation culture on the in vitro digestibilities of dry matter, crude fiber, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude protein, and pH in in vitro experiment of diets for dairy cows. A fungal species, Aspergillus oryzae was supplied by Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (KCTC 1229). The experimental diets were commercial compound feed (concentrate) and total mixed ration (TMR) for lactating cows, of which chemical analyses were determined at Research and Development Institute, Woosung Feed Co., Ltd., while the digestibilities were done at the laboratory of Chungnam National University. Aspergillus oryzae culture products were added to compound feed and TMR at the rate of 0, 1.0, 2.0, 3.0% respectively. The experimental diet with the rumen fluid sampled from Holstein fresian milking cows were used and digested for 24 hrs, 48hrs and 72hrs in the shaking incubator. The residues of the digesta were digested for 48hrs in the incubator in which put 30ml of 0.1N HCl with 0.2% pepsin at $39^{\circ}C$. The final precipitates were dried for 48hrs in the drier at $60^{\circ}C$. These experimental procedures were triplicated to determine the in vitro digestibility of dry matter, crude fiber, ADF, NDF, crude protein and pH. Compared to control diet, not added Aspergillus oryzae, the DM digestibility of fungal diets were improved 2.1%(63.1%), 9.7%(68.5%) and 9.0%(68.0%) for 24 hour fermentation in compound feed while 4.8%(60.0%), 6.4%(61.1%) and 2.9%(58.8%) in TMR. On the contrary, for 48 hour and 72 hour digestibilities, the effects of Aspergillus oryzae culture on the digestibility of dry matter were relatively lowered compared to 24 hour digestibility. Referring to the digestibility of dietary fiber, Aspergillus oryzae was believed to significantly improve digestibilities of crude fiber, ADF and NDF. Those were increased up to 13.3%(53.3%) for 24 hour fermentation, while 2.4%(54.6%) for 3.0% added for 72 hour fermentation in compound feed. However, there were no significant differences among the treatments for the inclusion rate of Aspergillus oryzae, even though the more inclusion rate, the better digestibility. The protein digestibilities were significantly improved from 0.4%(79.7%) to 9.4%(71.8%) by adding Aspergillus oryzae into compound feed. However, there were no significant differences between the two experimental diets, 2.0% and 3.0% Aspergillus oryzae included diets. In case of TMR, the protein digestibilities were significantly improved from 4.0%(70.4%) to 6.3%(65.1%) by adding Aspergillus oryzae. However, there were no significant differences between the two experimental diets, 2.0% and 3.0% Aspergillus oryzae included diets. In this study, there were no significant differences among the treatments in pH. On the contrary, there were slightly decrease in pH by adding Aspergillus oryzae into experimental diets but not significant. Summarizing the results of this examination, Aspergillus oryzae fermentation culture is believed to improve the digestibilities of dry matter, fiber and crude protein in cattle diets. However, more detailed research for the mechanism of the fungal culture is required to improve ruminal environment.

  • PDF

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

Effects of Nitrogen Fertilization Increment on Forage Crops Cultivation in Saemangum Reclaimed Land (새만금간척지 사료작물 재배시 질소증비 효과)

  • Yang, Chang-Hyu;Kim, Sun;Lee, Jang-Hee;Baek, Nam-Hyun;Kim, Taek-Kyum;Choi, Weon-Young;Jeong, Jae-Hyuk;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.235-240
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were two treatments of nitrogen fertilization 20% increment based on the standard fertilization of 150, $200kg\;ha^{-1}$. Whole crop barley as the winter crop sowed on 27 October. After the whole crop barley was harvested at the end of May. Corn and sorghum${\times}$sudangrass as the summer crop sowed at the early of June successively on the same field. Emergence rate the whole crop barley was high while the summer crops were low. Soil salinity was increased during cultivation of summer crops. However, corn and sorghum${\times}$sudangrass were not damaged by salt. Increase of nitrogen fertilization made the growth of cultivation crops good, stem and leaf tended to have a lot of the mineral nutrients at heading stage and silking stage. After experiment, among soil chemical properties pH, content of exchangeable sodium were decreased and content of organic matter, available phosphate were increased. Dry matter yield were showed whole crop barley $13,170kg\;ha^{-1}$ and sorghum${\times}$sudangrass $19,440kg\;ha^{-1}$ by increment of nitrogen fertilization. Therefore, to improve the product and nutrient balance of reclaimed saline land comprehensive soil management should be considered.

Awareness of Major Zoonoses among Dairy Farmers in Gyeonggi Province (경기도 낙농업자의 주요 인수공통감염증 인지도)

  • Choi, Kum-Bal;Lim, Hyun-Sul;Lee, Kwan;Min, Young-Sun
    • Journal of agricultural medicine and community health
    • /
    • v.35 no.4
    • /
    • pp.339-349
    • /
    • 2010
  • Objective: We surveyed awareness levels of brucellosis, Q fever and enterohemorrhagic Escherichia coli (EHEC) among dairy farmers in Gyeonggi Province to suggest directions for public education and public relations. Methods: We designed questionnaires to evaluate awareness of 3 major zooneses. We conducted a questionnaire survey to assess knowledge of the general characteristics of them, information sources for the awareness of zooneses, and the mode of transmission. Subjects were 716 workers from 482 dairy farms in Gyeonggi province. Results: The awareness levels for brucellosis, Q fever, and EHEC were 90.2%, 2.5% and 56.6%, respectively. Awareness of brucellosis and EHEC were tended to increase with higher number of school years. Television was the most common route of information for these zoonoses. Most common responses for questions concerning the method of transmission for each zoonoses, 'Contact with parturient fluid or placenta of animal' was 63.2% for brucellosis, 'Ingestion of raw meat or residual product' was 66.7% and 64.2% for Q fever and EHEC, respectively. The most common reason why dairy farmers think that it is difficult to prevent zoonoses was the inconvenience of wearing protection. Conclusions: Education programs for zoonoses, especially Q fever, are needed for dairy farmers. In addition, publicity information activities about prevention of zoonoses are needed for high risk groups, such as the dairy farmers surveyed.

A Safety Survey on Pesticide Residues in Tropical Fruits Depending on Implementation of Positive List System (Positive List System 도입에 따른 열대과일류의 잔류농약 안전성 조사)

  • Kang, Hyang-Ri;Park, Yong-Bae;Do, Yung-Suk;Jeong, Jin-A;Lee, Seong-Bong;Cho, Sang-Hun;Lee, Hyo-Kyung;Son, Ji-Hee;Lee, Mi-Kyoung;Lee, Byoung-Hoon;Park, Jin-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.310-315
    • /
    • 2018
  • Under the "Positive List System (PLS)," a uniform limit of 0.01 mg/kg is applied if the agricultural product does not have a Maximum Residue Limit (MRL) for a pesticide. The purpose of this research is to conduct residual pesticide monitoring on tropical fruits distributed in Gyeonggi-do to investigate the effects of PLS and provide basic materials for establishing MRLs of residual pesticides for tropical fruits produced in Korea. By inspecting 120 tropical fruits distributed in Gyeonggi-do according to Multi-class pesticide multi-residue methods, we detected sevenfruits from threekinds of banana, mangoes, and kiwis with six different residual pesticides. Azoxystrobin and chlorpyrifos were detected from bananas, chlorfenapyr from mangoes, and chlorothalonil, iprodione, and procymidone from kiwis. A single case of chlorfenapyr and chlorothalonil was found with a mango and a kiwi produced in Korea, respectively, and by applying PLS we found that they exceeded the MRL of residual pesticide. Thus, it is necessary to set the MRL of residual pesticides for tropical fruits produced in Korea.

Changes of MCPD and Chemical Components in Soy Sauce Made of Acid-hydrolyzate of Defatted Soy protein by Fermenting the Soy Sauce koji (곡자첨가에 의한 산분해간장 발효 중 MCPD 및 주요 화학성분의 변화)

  • Yoon, Bok-Man;Park, Jae-Sean;Park, Chang-Hee;Choi, Yeong-Jin;Jun, Mun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.419-424
    • /
    • 1998
  • Removal of monochloropropanediol (MCPD) and improvement of quality of the soy-sauce made from acid-hydrolyzate of defatted soy protein (SAHSP) were examined by fermenting the soy-sauce with soy-sauce koji or koji plus Pediococcus soya or/and Saccharomyces rouxii. The overall fermentation process performed in this work consisted sequentially of autodigestion of soy-sauce koji $(at\;45^{\circ}C\;for\;12\;days)$, lactic acid fermentation $(at\;30^{\circ}C\;for\;14\;days\;in\;S3\;and\;S4)$, ethanol fermentation $(at\;30^{\circ}C\;for\;14\;days\;in\;S2\;and\;S4)$,and aging $(at\;25^{\circ}C\;for\;20\;days)$. At the end of the autodigestion period, the highest MCPD removal (from the initial 38.6 ppm to 1.3 ppm) was observed in the S-2. Reducing sugar contents of the S-2 and S-4 sharply decreased from the 30th day of incubation, from the initial concentration of about 5.0% to less than 0.5% at the end of the process. Total soluble nitrogen content of all the soy-sauce products slightly increased during the overall fermentating period.The level of free glutamic acid, a major amino acid that is known to determine the taste of soy-sauce was determined to be an average value of $1270{\sim}1323\;mg/100\;mL$ of soy-sauce. The results of sensory evaluation of the fermented SAHSPs show that qualities of the S-2 and S-4 samples are nearly on the same level with that of the commercially fermented soy-sauce (p<0.05). This result suggests that the fermentation process in this work, especially the process performed with S. rouxii has a good effect for removing MCPD from SAHSP and also for improving quality of the SAHSP product.

  • PDF