• Title/Summary/Keyword: Agricultural land use change

Search Result 209, Processing Time 0.023 seconds

Analysis of land use change for advancing national greenhouse gas inventory using land cover map: focus on Sejong City

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.933-940
    • /
    • 2020
  • Land-use change matrix data is important for calculating the LULUCF (land use, land use change and forestry) sector of the national greenhouse gas inventory. In this study, land cover changes in 2004 and 2019 were compared using the Wall-to-Wall technique with a land cover map of Sejong City from the Ministry of Environment. Sejong City was classified into six land use classes according to the Intergovernmental Panel on Climate Change (IPCC) guidelines: Forest land, crop land, grassland, wetland, settlement and other land. The coordinate system of the land cover maps of 2004 and 2019 were harmonized and the land use was reclassified. The results indicate that during the 15 years from 2004 to 2019 forestlands and croplands decreased from 50.4% (234.2 ㎢) and 34.6% (161.0 ㎢) to 43.4% (201.7 ㎢) and 20.7% (96.2 ㎢), respectively, while Settlement and Other land area increased significantly from 8.9% (41.1 ㎢) and 1.4% (6.9 ㎢) to 35.6% (119.0 ㎢) and 6.5% (30.3 ㎢). 79.㎢ of cropland area (96.2 ㎢) in 2019 was maintained as cropland, and 8.8 ㎢, 1.7 ㎢, 0.5 ㎢, 5.4 ㎢, and 0.4 ㎢ were converted from forestland, grassland, wetland, and settlement, respectively. This research, however, is subject to several limitations. The uncertainty of the land use change matrix when using the wall-to-wall technique depends on the accuracy of the utilized land cover map. Also, the land cover maps have different resolutions and different classification criteria for each production period. Despite these limitations, creating a land use change matrix using the Wall-to-Wall technique with a Land cover map has great advantages of saving time and money.

Land-use Mapping and Change Detection in Northern Cheongju Region (청주 북부지역의 토지이용 매핑과 변화탐지)

  • Na, Sang-Il;Park, Jong-Hwa;Shin, Hyoung-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • Land-use in northern Cheongju region is changing rapidly because of the increased interactions of human activities with the environment as population increases. Land-use change detection is considered essential for monitoring the growth of an urban complex. The analysis was undertaken mainly on the basis of the multi-temporal Landsat images (1991, 1992 and 2000) and DEM data in a post-classification analysis with GIS to map land-use distribution and to analyse factors influencing the land-use changes for Cheongju city. The area of each land-use category was also calculated for monitoring land-use changes. Land-use statistics revealed that substantial land-use changes have taken place and that the built-up areas have expanded by about $17.57km^2$ (11.47%) over the study period (1991 - 2000). This study illustrated an increasing trend of urban and barren lands areas with a decreasing trend of agricultural and forest areas. Land-use changes from one category to others have been clearly represented by the NDVI composite images, which were found suitable for delineating the development of urban areas and land use changes in northern Cheongju region. Rapid economic developments together with the increasing population were noted to be the major factors influencing rapid land use changes. Urban expansion has replaced urban and barren lands.

Analysis of Baseflow using Future Land Use and Climate Change Scenario (토지이용 및 기후 예측자료를 활용한 미래 기저유출 분석)

  • Choi, Yujin;Kim, Jonggun;Lee, Dong Jun;Han, Jeongho;Lee, Gwanjae;Park, Minji;Kim, Kisung;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.45-59
    • /
    • 2019
  • Since the baseflow, which constitutes most of the river flow in the dry season, plays an important role in the solution of river runoff and drought, it is important to accurately evaluate the characteristics of the baseflow for river management. In this study, land use change was evaluated through time series data of land use, and then baseflow characteristics were analyzed by considering climate change and land use change using climate change scenarios. The results showed that the contribution of baseflow of scenarios considering both climate change and land use change was lower than that of scenarios considering only climate change for yearly and seasonal analysis. This implies that land use changes as well as climate changes affect base runoff. Thus, if we study the watershed in which the land use is occurring rapidly in the future, it is considered that the study should be carried out considering both land use change and climate change. The results of this study can be used as basic data for studying the baseflow characteristics in the Gapcheon watershed considering various land use changes and climate change in the future.

Prediction of Land-cover Changes and Analysis of Paddy Fields Changes Based on Climate Change Scenario (A1B) in Agricultural Reservoir Watersheds (기후변화 시나리오 (A1B)에 따른 농업용 저수지 유역의 미래 토지피복변화 예측 및 논 면적 변화 특성 분석)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Park, Na-Young;Choi, Jin-Yong;Yun, Dong-Koun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • This study was aim to predict future land-cover changes and to analyze regional land-cover changes in irrigation areas and agricultural reservoir watersheds under climate change scenario. To simulate the future land-cover under climate change scenario - A1B of the SRES (Special Report on Emissions Scenarios), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation to socioeconomic and biophysical driving factors. For the study areas, 8 agricultural reservoirs were selected from 8 different provinces covering all around nation. The simulation results from 2010 to 2100 suggested future land-cover changes under the scenario conditions. For Madun reservoir in Gyeonggi-do, total decrease amount of paddy area was a similar amount of 'Base demand scenario' of Water Vision 2020 published by MLTMA (Ministry of Land, Transport and Maritime Affairs), while the decrease amounts of paddy areas in other sites were less than the amount of 'High demand scenario' of Water Vision 2020. Under A1B scenario, all the land-cover results showed only slight changes in irrigation areas of agricultural reservoirs and most of agricultural reservoir watersheds will be increased continuously for forest areas. This approach could be useful for evaluating and simulating agricultural water demand in relation to land-use changes.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

Land Use Change Prediction of Cheongju using SLEUTH Model (SLEUTH 모델을 이용한 청주시 토지이용변화 예측)

  • Park, In-Hyeok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.109-116
    • /
    • 2013
  • By IPCC climate change scenario, the socioeconomic actions such as the land use change are closely associated with the climate change as an up zoning action of urban development to increase green gas emission to atmosphere. Prediction of the land use change with rational quality can provide better data for understanding of the climate change in future. This study aims to predict land use change of Cheongju in future and SLEUTH model is used to anticipate with the status quo condition, in which the pattern of land use change in future follows the chronical tendency of land use change during last 25 years. From 40 years prediction since 2000 year, the area urbanized compared with 2000 year increases up to 87.8% in 2040 year. The ratios of the area urbanized from agricultural area and natural area in 2040 are decreased to 53.1% and 15.3%, respectively.

Evaluation of Hydrological Impacts Caused by Land Use Change (토지이용변화에 따른 수문영향분석)

  • Park, Jin-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.54-66
    • /
    • 2002
  • A grid-based hydrological model, CELTHYM, capable of estimating base flow and surface runoff using only readily available data, was used to assess hydrologic impacts caused by land use change on Little Eagle Creek (LEC) in Central Indiana. Using time periods when land use data are available, the model was calibrated with two years of observed stream flow data, 1983-1984, and verified by comparison of model predictions with observed stream flow data for 1972-1974 and 1990-1992. Stream flow data were separated into direct runoff and base flow using HYSEP (USGS) to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from simulation results, and the change in these ratios with land use change, shows that the ratio of direct runoff increases proportionally with increasing urban area. The ratio of direct runoff also varies with annual rainfall, with dry year ratios larger than those for wet years shows that urbanization might be more harmful during dry years than abundant rainfall years in terms of water yield and water quality management.

Using Tower Flux Data to Assess the Impact of Land Use and Land Cover Change on Carbon Exchange in Heterogeneous Haenam Cropland (비균질한 해남 농경지의 탄소교환에 미치는 토지사용 및 피복변화의 영향에 대한 미기상학 자료의 활용에 관하여)

  • Indrawati, Yohana Maria;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • Land use and land cover change (LULCC) due to human activities directly affects natural systems and contributes to changes in carbon exchange and climate through a range of feedbacks. How land use and land cover changes affect carbon exchanges can be assessed using multiyear measurement data from micrometeorological flux towers. The objective of the research is to assess the impact of land use and land cover change on carbon exchange in a heterogeneous cropland area. The heterogeneous cropland area in Haenam, South Korea is also subjected to a land conversion due to rural development. Therefore, the impact of the change in land utilization in this area on carbon exchange should be assessed to monitor the cycle of energy, water, and carbon dioxide between this key agricultural ecosystem and the atmosphere. We are currently conducting the research based on 10 years flux measurement data from Haenam Koflux site and examining the LULCC patterns in the same temporal scale to evaluate whether the LULCC in the surrounding site and the resulting heterogeneity (or diversity) have a significant impact on carbon exchange. Haenam cropland is located near the southwestern coast of the Korean Peninsula with land cover types consisting of scattered rice paddies and various croplands (seasonally cultivated crops). The LULCC will be identified and quantified using remote sensing satellite data and then analyzing the relationships between LULCC and flux footprint of $CO_2$ from tower flux measurement. We plan to calculate annual flux footprint climatology map from 2003 to 2012 from the 10 years flux observation database. Eventually, these results will be used to quantify how the system's effective performance and reserve capacity contribute to moving the system towards more sustainable configuration. Broader significance of this research is to understand the co-evolution of the Haenam agricultural ecosystem and its societal counterpart which are assumed to be self-organizing hierarchical open systems.

  • PDF

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Spatio-temporal change detection of land-use and urbanization in rural areas using GIS and RS - Case studies of Yongin and Anseong regions - (GIS와 RS를 이용한 농촌지역 토지이용 및 도시화 변화현상의 시공간 탐색 - 용인 및 안성지역을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.153-162
    • /
    • 2011
  • This study analyzed the spatio-temporal change detection of land-use and urbanization in Yongin and Anseong regions, Kyunggi Province, using three Landsat-5 TM images for 1990, 1996, and 2000. Remote sensing (RS) and geographic information system (GIS) techniques were used for image classification and result analysis. Six land-use types were classified using supervised maximum likelihood classification. In the two study areas, the land-use changed significantly, especially the decrease of arable land and forest and increase of built-up area. Spatially, the urban expansion of Yongin region showed a spreading trend mainly along the national road and expressways. But in Anseong region the expansion showed 'urban sprawl phenomenon' with irregular shape like starfish. Temporally, the urban expansion showed disparity - the growth rates of urbanized area rose from the period 1990-1996 to 1996-2000 in both study areas. The increased built-up areas were converted mainly from paddy, dry vegetation, and forest.