• 제목/요약/키워드: Agricultural fertilizer

검색결과 2,626건 처리시간 0.033초

벼 재배에서 양돈분뇨 액비 시용시 양분이동 (Nutrient Transfer in the Application of the Swine Slurry Liquid Fertilizer in Rice Paddy)

  • 권순익;김권래;김민경;정구복;홍승길;신중두;박우균;성기석;이덕배
    • 유기물자원화
    • /
    • 제18권4호
    • /
    • pp.77-85
    • /
    • 2010
  • 양돈분뇨의 처리는 환경문제 해결과 자원으로서의 이용 등 중요한 의미가 있다. 본 연구에서는 양돈분뇨의 처리 및 자원화 방법으로 개발된 SCB 액비를 토양에 시용했을 때 양분이 작물에 흡수 이용되는 양과 토양중에 잔류하는 양을 조사하여 SCB 시용량 및 시용방법 결정을 위한 기초자료를 제공하고자 하였다. 무비, 화학비료, 저장액비, SCB 액비를 완전임의배치 5반복으로 처리하여 시험을 수행하였다. 벼의 생육은 화학비료구에서 가장 좋았고, 다음으로 저장액비, SCB 액비, 무비구 순이었다. 볏짚 수량 역시 화학비료 처리구에서 가장 많았으며, 다음으로 저장액비, SCB 액비, 무비구 순이었다. 생육상황은 수량까지 이어져 무비구는 처리구보다 감수 경향을 보였으며, 다른 처리구 간에는 대동소이하였다. 식물체의 무기성분 흡수량에서도 화학비료를 비롯한 처리구의 질소, 인산 등 각종 무기성분 흡수량이 무비구에 비하여 많았으나, 이를 제외한 처리 간에는 큰 차이가 없었다.

인산질비료 장기연용 논토양에서 유효인산 변동 (Change in Available Phosphate by Application of Phosphate Fertilizer in Long-term Fertilization Experiment for Paddy Soil)

  • 김명숙;김석철;윤순강;박성진;이창훈
    • 한국환경농학회지
    • /
    • 제36권3호
    • /
    • pp.141-146
    • /
    • 2017
  • BACKGROUND: Phosphorus(P) is a vital factor for rice but excess input of phosphorus fertilizer can cause environmental risk and waste of fertilizer resources. We studied to assess the change of available phosphate, P balance, critical concentration of available phosphate under a rice single system. METHODS AND RESULTS: The changes of available phosphate of paddy soil were examined from long-term fertilization experiment which was started in 1954 at the National Academy of Agricultural Science. The treatments were no phosphate fertilization(No fert., and N), phosphate fertilization(NPK, NPKC, and NPKCLS). The available phosphorus concentrations in treatments without phosphate fertilizer (No fert. and N) were decreased continuously. But, after 47 years, available phosphate content in phosphate fertilizer treatment (NPK, NPKC, and NPKCLS) reached at the highest ($245{\sim}331mg\;kg^{-1}$), showing a tendency to decrease afterward. The mean annual P field balance in these treatments (NPK, NPKC, and NPKCLS) had positive values that varied from 16.6 to $17.5kg\;ha^{-1}year^{-1}$, and ratio of residual P were increased. These showed that phosphate fertilizer in soil were converted into the form of residual phosphorus which was not easily extracted by available phosphate extractant. Also, It was estimated that the critical value of available phosphate for rice cultivation was $120mg\;kg^{-1}$ using Cate-Nelson equation. CONCLUSION: We concluded that no more phosphate fertilizer should be applied in rice single system if soil available phosphate is higher than the critical P value.

Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide BridgesS

  • Tan, Hao;Miao, Renyun;Liu, Tianhai;Cao, Xuelian;Wu, Xiang;Xie, Liyuan;Huang, Zhongqian;Peng, Weihong;Gan, Bingcheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1717-1722
    • /
    • 2016
  • A novel phytase of Acidobacteria was identified from a soil metagenome, cloned, overexpressed, and purified. It has low sequence similarity (<44%) to all the known phytases. At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at physiological temperature (37℃) and could retain 92% residual activity after 30 min, indicating the phytase is acidophilic and acidostable. However the phytase shows poor stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time of the engineered phytase at 60℃ and 80℃, respectively, is 3.0× and 2.8× longer than the wild-type, and its activity and acidostability are not significantly affected.

상추재배를 위한 시설하우스 배액의 비효평가 - 무기태 질소를 중심으로 - (Analysis of the Fertilizing Effects of Hydroponic Waste Solution on Lettuce (Lactuca sativa var. captitata) Cultivation - Based on Inorganic Nitrogen Content -)

  • 윤성욱;임주미;문종필;장재경;박민정;손진관;이현호;서효민;최덕규
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.13-21
    • /
    • 2021
  • The feasibility of HWS for agricultural use was analyzed through a crop cultivation test to utilize the hydroponic waste solution (HWS) generated from the nutriculture greenhouse. The fertilizing effect of HWS was assessed on the basis of the inorganic nitrogen (N) mostly existed in HWSs, and nitrogen (urea) fertilizer. Lettuce was selected as the target crop influenced by the soil treatment and also for the crop cultivation test. Thus, the change in growth characteristics of lettuce and that in chemical characteristics of the soil were investigated. In terms of the growth of lettuce, the C control group with 70% nitrogen (urea) fertilizer and 30% HWS and the D control group with 50% nitrogen (urea) fertilizer and 50% HWS were more effective than the practice control group (B) with 100% nitrogen (urea) fertilizer. The results of this study confirmed the combined applicability of the chemical fertilizer and HWS for crop cultivation. Because NO3-N present in HWS has a high possibility of leaching into the soil, its applicability as a fertilizer has been considered to be relatively low in Korea. However, if an appropriate mixing ratio of urea fertilizer and HWS could be applied, the problems associated with leaching of nitrate nitrogen could be reduced with beneficial effects on crop cultivation. Thus, future studies are required on the treatment effect of HWS with repeated cultivation, impact assessment on the surrounding environment, and appropriate fertilization methods using nitrogen (urea) fertilizer and HWS. These studies would facilitate the sustainable recycling of HWS.

시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향 (Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil)

  • 임정은;하상건;이예진;윤혜진;조민지;이덕배;성좌경
    • 농업과학연구
    • /
    • 제42권4호
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.

Analysis of Soil Total Nitrogen and Inorganic Nitrogen Content for Evaluating Nitrogen Dynamics

  • Lee, Seul-Bi;Sung, Jwa-Kyung;Lee, Ye-Jin;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • 한국토양비료학회지
    • /
    • 제50권2호
    • /
    • pp.100-105
    • /
    • 2017
  • Various methods for assessing soil total nitrogen (TN) and inorganic N content have been developed to manage nutrient and to understand N cycle in soil. This paper address the technical procedures in arable soil samples to conduct soil sampling, sample preparation, and measuring total N and inorganic N. Among various methods for measuring soil total nitrogen contents, Kjeldahl distillation and Indophenol blue method have widely used due to reliability and economic advances. Also, two methods can analyze more samples at the same time compared with other nitrogen measuring methods. For evaluating inorganic N content, mainly in forms of nitrate-N ($NO_3{^-}-N$) and ammonium-N ($NH_4{^+}-N$), extraction with a single reagent such as 2M KCl has been employed, followed by Kjeldahl distillation or indophenol blue methods.

Plant Analysis Methods for Evaluating Mineral Nutrient

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • 한국토양비료학회지
    • /
    • 제50권2호
    • /
    • pp.93-99
    • /
    • 2017
  • Analysis of mineral nutrients in plant is required for evaluating diagnosis of plant nutritional status. Pretreatment procedure for the analysis of plant can be varied depending on elements to be analyzed. Wet-digestion is suitable for total nitrogen, phosphate and cations, however, digestion solution including nitric acid is not suitable for nitrogen analysis. Incineration procedure is required to analyze chloride, silicate and total sulfur. After digestion, total nitrogen is analyzed by Kjeldahl method, and phosphate is detected at 470nm by colorimetric analysis with ammonium meta vanadate. Cations and micro elements are determined by titration or colorimetry, also, these elements can be measured by Atomic absorption spectrometer (AAS) or Inductively coupled plasma spectrometer (ICP).

Yield and Free Sugar Contents of Burdock (Arctium lappa L.) depending on Nitrogen Levels

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.677-681
    • /
    • 2016
  • Excessive nitrogen fertilization influences crop yields and quality as well as environmental pollution. In this study, yields, nitrogen use efficiency and free sugar contents of burdock (Arctium lappa L.) were evaluated at different levels of nitrogen fertilization. Nitrogen fertilizer was applied at 5 levels (0, 50, 100, 150, 200%) based on the conventional fertilization ($N=230kg\;ha^{-1}$), and phosphate and potassium fertilizer were treated by conventional P and K fertilization ($P_2O_5-K_2O=140-210kg\;ha^{-1}$) in all plots. The root yields of burdock were the highest in N 100~150% treatment plots. Nitrogen use efficiency and nitrogen recovery decreased from over N 150% treatment. Nitrogen uptake of root was greater than that of shoot in N 50~200% treatments. Fructose contents in root were inversely proportional to the level of nitrogen fertilization. As considering nitrogen recovery and root quality, economical burdock yield was obtained in N $230kg\;ha^{-1}$.

Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.819-825
    • /
    • 2016
  • Monitoring of soil fertility and crop productivity in long-term application of silicate fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of silicate fertilizer for rice cultivation from 1969 to 2014. The treatments were no silicate fertilizer treatments (N, NC, NPK, and NPKC) and silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S). The 46-yr input of $2\;ton\;ha^{-1}yr^{-1}$ of silicate fertilizer increased pH 0.6 ~ 1.1 and exchangeable Ca $2.0{\sim}2.4cmol_c\;kg^{-1}$ in silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) compared with no silicate fertilizer treatments (N, NC, NPK, and NPKC) because silicate fertilizer included Ca component. Also, available silicate concentrations of silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) increased $169mg\;kg^{-1}$ compared to no silicate fertilizer treatments. In Period II ('90~'14), the mean annual Si field balance varied from 62 to $175kg\;ha^{-1}yr^{-1}$ in silicate fertilizer treatments, indicating continuous accumulation of soil Si. Silicon uptake and grain yield of rice had greater differences between N treatment and N+S treatment than other treatments. This showed that the application of silicate fertilizer had greater effect in nutrient-poor soils than in proper nutrient soils. Thus the application of silicate fertilizer led to improvement the fertility of soil and increasement of rice production for the lack of soil nutrients.