• 제목/요약/키워드: Agricultural Tomato Images

검색결과 15건 처리시간 0.034초

Localization of ripe tomato bunch using deep neural networks and class activation mapping

  • Seung-Woo Kang;Soo-Hyun Cho;Dae-Hyun Lee;Kyung-Chul Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.399-406
    • /
    • 2023
  • In this study, we propose a ripe tomato bunch localization method based on convolutional neural networks, to be applied in robotic harvesting systems. Tomato images were obtained from a smart greenhouse at the Rural Development Administration (RDA). The sample images for training were extracted based on tomato maturity and resized to 128 × 128 pixels for use in the classification model. The model was constructed based on four-layer convolutional neural networks, and the classes were determined based on stage of maturity, using a Softmax classifier. The localization of the ripe tomato bunch region was indicated on a class activation map. The class activation map could show the approximate location of the tomato bunch but tends to present a local part or a large part of the ripe tomato bunch region, which could lead to poor performance. Therefore, we suggest a recursive method to improve the performance of the model. The classification results indicated that the accuracy, precision, recall, and F1-score were 0.98, 0.87, 0.98, and 0.92, respectively. The localization performance was 0.52, estimated by the Intersection over Union (IoU), and through input recursion, the IoU was improved by 13%. Based on the results, the proposed localization of the ripe tomato bunch area can be incorporated in robotic harvesting systems to establish the optimal harvesting paths.

Estimation of tomato maturity as a continuous index using deep neural networks

  • Taehyeong Kim;Dae-Hyun Lee;Seung-Woo Kang;Soo-Hyun Cho;Kyoung-Chul Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.837-845
    • /
    • 2022
  • In this study, tomato maturity was estimated based on deep learning for a harvesting robot. Tomato images were obtained using a RGB camera installed on a monitoring robot, which was developed previously, and the samples were cropped to 128 × 128 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the mean-variance loss was used to learn implicitly the distribution of the data features by class. In the test stage, the tomato maturity was estimated as a continuous index, which has a range of 0 to 1, by calculating the expected class value. The results show that the F1-score of the classification was approximately 0.94, and the performance was similar to that of a deep learning-based classification task in the agriculture field. In addition, it was possible to estimate the distribution in each maturity stage. From the results, it was found that our approach can not only classify the discrete maturation stages of the tomatoes but also can estimate the continuous maturity.

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제38권3호
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.

딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축 (A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm)

  • 나명환;조완현;김상균
    • 품질경영학회지
    • /
    • 제48권4호
    • /
    • pp.581-596
    • /
    • 2020
  • Purpose: purpose of this study was to propose the web application platform which can be to detect and discriminate various diseases and pest of tomato plant based on the large amount of disease image data observed in the facility or the open field. Methods: The deep learning algorithms uesed at the web applivation platform are consisted as the combining form of Faster R-CNN with the pre-trained convolution neural network (CNN) models such as SSD_mobilenet v1, Inception v2, Resnet50 and Resnet101 models. To evaluate the superiority of the newly proposed web application platform, we collected 850 images of four diseases such as Bacterial cankers, Late blight, Leaf miners, and Powdery mildew that occur the most frequent in tomato plants. Of these, 750 were used to learn the algorithm, and the remaining 100 images were used to evaluate the algorithm. Results: From the experiments, the deep learning algorithm combining Faster R-CNN with SSD_mobilnet v1, Inception v2, Resnet50, and Restnet101 showed detection accuracy of 31.0%, 87.7%, 84.4%, and 90.8% respectively. Finally, we constructed a web application platform that can detect and discriminate various tomato deseases using best deep learning algorithm. If farmers uploaded image captured by their digital cameras such as smart phone camera or DSLR (Digital Single Lens Reflex) camera, then they can receive an information for detection, identification and disease control about captured tomato disease through the proposed web application platform. Conclusion: Incheon Port needs to act actively paying.

Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes

  • Rahman, Anisur;Park, Eunsoo;Bae, Hyungjin;Cho, Byoung-Kwan
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.823-837
    • /
    • 2018
  • The objective of this study was to evaluate the firmness and the sweetness index (SI) of tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 - 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom hyperspectral reflectance imaging system, from which the mean spectra of each tomato were extracted from the regions of interest. The reference firmness and sweetness index of the same sample was measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing methods. The calibration model developed by PLS regression based on the Savitzky-Golay second-derivative preprocessed spectra resulted in a better performance for both the firmness and the SI of the tomatoes compared to models developed by other preprocessing methods. The correlation coefficients ($R_{pred}$) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, respectively. Then, the feature wavelengths were identified using a model-based variable selection method, i.e., variable importance in projection, from the PLS regression analyses. Finally, chemical images were derived by applying the respective regression coefficients on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on the firmness and the SI of the tomatoes. The results show that the proposed HSI technique has potential for rapid and non-destructive evaluation of firmness and the sweetness index of tomatoes.

기계시각장치에 의한 토마토 작물의 병해엽 검출 (Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.

Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders

  • Zhang, Li;Jia, Jingdun;Li, Yue;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2012-2027
    • /
    • 2019
  • Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.

Evaluation of Firmness and Sweetness Index of Tomatoes using Hyperspectral Imaging

  • Rahman, Anisur;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Cho, Byoung-Kwan
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.44-44
    • /
    • 2017
  • The objective of this study was to evaluate firmness, and sweetness index (SI) of tomatoes (Lycopersicum esculentum) by using hyperspectral imaging (HSI) in the range of 1000-1400 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and the reference firmness and sweetness index of the same sample were measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing method. The results showed that the regression model developed by PLS regression based on Savitzky-Golay (S-G) second-derivative preprocessed spectra resulted in better performance for firmness, and SI of tomatoes compared to models developed by other preprocessing methods, with correlation coefficients (rpred) of 0.82, and 0.74 with standard error of prediction (SEP) of 0.86 N, and 0.63 respectively. Then, the feature wavelengths were identified using model-based variable selection method, i.e., variable important in projection (VIP), resulting from the PLS regression analyses and finally chemical images were derived by applying the respective regression coefficient on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on firmness, and sweetness index (SI) of tomatoes. Therefore, these research demonstrated that HIS technique has a potential for rapid and non-destructive evaluation of the firmness and sweetness index of tomatoes.

  • PDF

토마토 위치 및 자세 추정을 위한 데이터 증대기법 (Data Augmentation for Tomato Detection and Pose Estimation)

  • 장민호;황영배
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.44-55
    • /
    • 2022
  • 농업 관련 방송 콘텐츠에서 과일에 대한 자동적인 정보 제공을 위해서 대상 과일의 인스턴스 영상 분할이 요구된다. 또한, 해당 과일에 대한 3차원 자세에 대한 정보 제공도 의미있게 사용될 수 있다. 본 논문에서는 영상 콘텐츠에서 토마토에 대한 정보를 제공하는 연구를 다룬다. 인스턴스 영상 분할 기법을 학습하기 위해서는 다량의 데이터가 필요하지만 충분한 토마토 학습데이터를 얻기는 힘들다. 따라서 적은 양의 실사 영상을 바탕으로 데이터 증대기법을 통해 학습 데이터를 생성하였다. 실사 영상만을 통한 학습 결과 정확도에 비해서, 전경과 배경을 분리해서 만들어진 합성 영상을 통해 학습한 결과, 기존 대비 성능이 향상되는 것을 확인하였다. 영상 전처리 기법들을 활용해서 만들어진 영상을 사용한 데이터 증대 영상의 학습 결과, 전경과 배경을 분리한 합성 영상보다 높은 성능을 얻는 것을 확인하였다. 객체 검출 후 자세 추정을 하기 위해 RGB-D 카메라를 이용하여 포인트 클라우드를 획득하였고 최소제곱법을 이용한 실린더 피팅을 진행하였고, 실린더의 축 방향을 통해 토마토 자세를 추정하였다. 우리는 다양한 실험을 통해서 대상 객체에 대한 검출, 인스턴스 영상 분할, 실린더 피팅의 결과가 의미있게 나타난다는 것을 보였다.

Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants

  • Rajendran, Dhinesh Kumar;Park, Eunsoo;Nagendran, Rajalingam;Hung, Nguyen Bao;Cho, Byoung-Kwan;Kim, Kyung-Hwan;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.300-310
    • /
    • 2016
  • Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.