• Title/Summary/Keyword: Agricultural Learning

Search Result 386, Processing Time 0.032 seconds

Effect of Using Computer Interface on Learning Speed Concept in the Korean Elementary School (국민학교 아동들의 속력 개념 형성에서 컴퓨터 인터페이스 활용 효과)

  • Kim, Hyoung-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 1995
  • In this study, the researcher tried to find out the effect of using a computer interface in teaching speed concept in the elementary school. The 4th and 5th pupils were sampled for this study. The school is located in a sub-urban agricultural area in Korea. In the study, the subjects were divided into two groups: experimental and comparison group. From the pretest, two groups did not show any difference in the understanding of speed concept. The computer interface and the programs to operate the interface and data analysis were developed by researcher. The interface is a modular type and designed ready to connect to microcomputer. The test items were consisted of (1) comparison of speed, (2) change of motion, (3) acceleration, and (4) deceleration. As the result, the researcher found the following results: 1. In case of speed comparison, no significant difference was found between experimental and comparison group. 2. In case of change of motion, acceleration, and deceleration, the experimental groups showed higher achievement both in 4th grade and 5th grade. However, the 4th graders showed more learning than the 5th graders. In conclusion, this study showed that the use of computer interface seemed to be very effective in teaching and learning speed concept in elementary school.

  • PDF

On Learning and Structure of Cerebellum Model Linear Associator Network(I) -Analysis & Development of Learning Algorithm- (소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(I) -분석 및 학습 알고리즘 개발-)

  • Hwang, H.;Baek, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.186-198
    • /
    • 1990
  • 인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.

  • PDF

A Study of Shiitake Disease and Pest Image Analysis based on Deep Learning (딥러닝 기반 표고버섯 병해충 이미지 분석에 관한 연구)

  • Jo, KyeongHo;Jung, SeHoon;Sim, ChunBo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.50-57
    • /
    • 2020
  • The work that detection and elimination to disease and pest have important in agricultural field because it is directly related to the production of the crops, early detection and treatment of the disease insects. Image classification technology based on traditional computer vision have not been applied in part such as disease and pest because that is falling a accuracy to extraction and classification of feature. In this paper, we proposed model that determine to disease and pest of shiitake based on deep-CNN which have high image recognition performance than exist study. For performance evaluation, we compare evaluation with Alexnet to a proposed deep learning evaluation model. We were compared a proposed model with test data and extend test data. The result, we were confirmed that the proposed model had high performance than Alexnet which approximately 48% and 72% such as test data, approximately 62% and 81% such as extend test data.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

Deep learning-based Automatic Weed Detection on Onion Field (딥러닝을 이용한 양파 밭의 잡초 검출 연구)

  • Kim, Seo jeong;Lee, Jae Su;Kim, Hyong Suk
    • Smart Media Journal
    • /
    • v.7 no.3
    • /
    • pp.16-21
    • /
    • 2018
  • This paper presents the design and implementation of a deep learning-based automated weed detector on onion fields. The system is based on a Convolutional Neural Network that specifically selects proposed regions. The detector initiates training with a dataset taken from agricultural onion fields, after which candidate regions with very high probability of suspicion are considered weeds. Non-maximum suppression helps preserving the less overlapped bounding boxes. The dataset collected from different onion farms is evaluated with the proposed classifier. Classification accuracy is about 99% for the dataset, indicating the proposed method's superior performance with regard to weed detection on the onion fields.

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Predicting Urban Tourism Flow with Tourism Digital Footprints Based on Deep Learning

  • Fangfang Gu;Keshen Jiang;Yu Ding;Xuexiu Fan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1162-1181
    • /
    • 2023
  • Tourism flow is not only the manifestation of tourists' special displacement change, but also an important driving mode of regional connection. It has been considered as one of significantly topics in many applications. The existing research on tourism flow prediction based on tourist number or statistical model is not in-depth enough or ignores the nonlinearity and complexity of tourism flow. In this paper, taking Nanjing as an example, we propose a prediction method of urban tourism flow based on deep learning methods using travel diaries of domestic tourists. Our proposed method can extract the spatio-temporal dependence relationship of tourism flow and further forecast the tourism flow to attractions for every day of the year or for every time period of the day. Experimental results show that our proposed method is slightly better than other benchmark models in terms of prediction accuracy, especially in predicting seasonal trends. The proposed method has practical significance in preventing tourists unnecessary crowding and saving a lot of queuing time.

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

A Study on the Effect of Using EBSmath on Self-Directed Math Learning of Students Living in the Farming Villages (EBSmath의 활용이 농촌학생들의 수학 자기주도적 학습에 미치는 영향 연구)

  • Jung, Soon-Mo;Park, Hey-Yeun;Kim, Yunghwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.1
    • /
    • pp.123-148
    • /
    • 2015
  • After government released the measures to reduce private tutoring and to advance math education, the Education Ministry carrying out projects to narrow the gap of education using ICT of the agricultural, mountain and fishing villages with 'ICT Supporting Business for the rural communities'. EBS(Educational Broadcasting System) also has established a website for self-directed math learning called EBSmath and offers various and customized services. This study has been conducted on how smartifact-assisted learning on EBSmath provided by 'ICT Supporting Business for the rural communities' will affect self-directed math learning of students. In other words, the purpose of this study is to see if students of the farming villages with poor surroundings of education using ICT can acquire knowledge for themselves and organize it systematically, and then they can finally produce new knowledge while they learn through EBSmath.