• Title/Summary/Keyword: Agri-business

Search Result 44, Processing Time 0.017 seconds

Exploratory Study on the Phenomenon of Technology Transfer in Livestock Industry Based on the Grounded Theory Approach: Backward Linkage Industries in Livestock Industry (근거이론 접근법을 이용한 축산업분야 기술이전현상에 관한 탐색연구: 후방연관산업을 중심으로)

  • Seol, Byung Moon;Park, Jong Bok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.1
    • /
    • pp.97-108
    • /
    • 2016
  • The competition between countries became internationalized in the market. However, a situation in which globalization is concerned is important to domestic corporates. Corporate strategy to survive in the domestic market are also juggling the limit of survival. Technology transfer and commercialization at this point has important implications now. The same applies to the national level. Public-to-private technology transfer has been more important, in order to overcome the international competitions. Although various studies have been made to promote technology transfer, in the livestock sector rarely attempted. Taking into account that few previous research and theory development has been achieved, the paper explored the technology transfer phenomenon in the sector employing the grounded theory approach by Strauss & Corbin(1998). Corporates that licensed in technologies through the Foundation of Agri. Tech. Commercialization & Transfer, were targeted as informants or interviewees. Finally, eight informants were selected sequentially utilizing theoretical sampling technique to the saturation point. As the result of open coding and axial coding of the interview data using NVivo10 by QSR International, 77 concepts, 20 sub-categories, and 7 categories were derived while paradigm model was established. Through selective coding, 'the factors affecting technology transfer in livestock sector' was identified as core category. The story line about the core category was developed based on four main categories. Finally, it is expected that the concepts, categories, and the relationship between them can be an important basis for further research.

  • PDF

MAKING AGRICULTURAL INSURANCE IN INDIA FARMER-FRIENDLY AND CLIMATE RESILIENT

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.11 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • Agricultural risks are exacerbated by a variety of factors ranging from climatevariability and change, frequent natural disasters, uncertainties in yields and prices, weakrural infrastructure, imperfect markets and lack of financial services including limited spanand design of risk mitigation instruments such as credit and insurance. Indian agriculture has little more than half (53%) of its area still rainfed and this makes it highly sensitive to vagaries of climate causing unstable output. Besides adverse climatic factors, there are man-made disasters such as fire, sale of spurious seeds, adulteration of pesticides and fertilizers etc., and all these severely affect farmers through loss in production and farm income, and are beyond the control of farmers. Hence, crop insurance' is considered to be the promising tool to insulate the farmers from risks faced by them and to sustain them in the agri-business. This paper critically evaluates the performance of recent crop insurance scheme viz., Pradhan Mantri Fasal Bhima Yojana (PMFBY) and its comparative performance with earlier agricultural insurance schemes implemented in the country. It is heartening that, the comparative performance of PMFBY with earlier schemes revealed that, the Government has definitely taken a leap forward in covering more number of farmers and bringing more area under crop insurance with the execution of this new scheme and on this front, it deserves the appreciation in fulfilling the objective for bringing more number of farmers under insurance cover. The use of mobile based technology, reduced number of Crop Cutting Experiments (CCEs) and smart CCEs, digitization of land record and linking them to farmers' account for faster assessment/settlement of claims are some of the steps that contributed for effective implementation of this new crop insurance scheme. However, inadequate claim payments, errors in loss/yield assessment, delayed claim payment, no direct linkage between insurance companies and farmers are the major shortcomings of this scheme. This calls for revamping the crop insurance program in India from time to time in tune with the dynamic changes in climatic factors on one hand and to provide a safety-net for farmers to mitigate losses arising from climatic shocks on the other. The future research avenues include: insuring the revenue of the farmer (Price × Yield) as in USA and more and more tenant farmers should be brought under insurance by doling out discounts for group coverage of farmers like in Philippines where 20 per cent discount in premium is given for a group of 5-10 farmers, 30 per cent for a group of 10-20 and 40 per cent for a group of >20 farmers.

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.