• Title/Summary/Keyword: Agonistic activity

Search Result 42, Processing Time 0.029 seconds

27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms

  • Kim, Bo-Young;Son, Yonghae;Cho, Hyok-rae;Lee, Dongjun;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2021
  • 27-Hydroxycholesterol (27OHChol) exhibits agonistic activity for liver X receptors (LXRs). To determine roles of the LXR agonistic activity in macrophage gene expression, we investigated the effects of LXR inhibition on the 27OHChol-induced genes. Treatment of human THP-1 cells with GSK 2033, a potent cell-active LXR antagonist, results in complete inhibition in the transcription of LXR target genes (such as LXRα and ABCA1) induced by 27OHChol or a synthetic LXR ligand TO 901317. Whereas expression of CCL2 and CCL4 remains unaffected by GSK 2033, TNF-α expression is further induced and 27OHChol-induced CCL3 and CXCL8 genes are suppressed at both the transcriptional and protein translation levels in the presence of GSK 2033. This LXR antagonist downregulates transcript levels and surface expression of CD163 and CD206 and suppresses the transcription of CD14, CD80, and CD86 genes without downregulating their surface levels. GSK 2033 alone had no effect on the basal expression levels of the aforementioned genes. Collectively, these results indicate that LXR inhibition leads to differential regulation of 27-hydroxycholesterol-induced genes in macrophages. We propose that 27OHChol induces gene expression and modulates macrophage functions via LXR-dependent and -independent mechanisms.

Effect of Gamiheichumhwan Extract on the GABAergic Neurotransmission (가미희첨환(加味稀僉丸)이 GABA성(性) 신경전달에 미치는 영향에 관한 연구)

  • Seo, Jong-Hoon;Kim, Dong-Hyun;Lee, Dong-Ung;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.1
    • /
    • pp.43-54
    • /
    • 2008
  • Objective: The aim of this study is to evaluate the anticonvulsive effects of Gamiheichumhwan extract and to explain its action in GABAergic neuromodulation of the rat brain. Method: The extracts of Gamiheichumhwan were investigated for their inhibitory effect on GABA transaminase activity, their influence on brain GABA and glutamate levels, their agonistic activity on GABA/benzodiazepine receptor and anticonvulsive action using in vitro and in vivo assays. Results: 1. The extract inhibited dose-dependently GABA transaminase (GABA-T) activity by 4.6% and 18.9%, respectively at dosages of 250 mg/kg and 500mg/kg mouse (p.o.). 2. Brian GABA level was increased to 72.0% and brain glutamate level was decreased to 9.6% at a dosage of 500 mg/kg mouse (p.o.). 3. The extract suppressed [3H]Ro15-1788 binding to rat cerebral cortical membrane by $81.4{\pm}0.8%$ at a dosage of 3.2 mg, suggesting its agonistic activity on GABA/benzodiazepin receptor. 4. The extract showed anticonvulsive effect by lengthening the onset time of convulsion, shortening the convulsion duration and diminishing the lethality. Conclusion : It is suggested that Gamiheichumhwan can be used to somnipathy and adapted to treatment and prevention of epilepsy or convulsion.

  • PDF

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Diaralkylthiourea Derivatives as a Novel Vanilloid Receptor Antagonist

  • Joo, Yung-Hyup;Kim, Jin-Kwan;Kim, Sun-Young;Choi, Jin-Kyu;Koh, Hyun-Ju;Jeong, Yeon-Su;Park, Young-Ho;Chung, Shin;Suh, Young-Ger;Oh, Uh-Taek;Park, Hyeung-Geun;Kim, Hee-Doo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.350.1-350.1
    • /
    • 2002
  • A series of diaralkylthiourea derivatives was prepared and tested for its antagonistic activity against vanilloid receptor. In this study we explored the possibility of selected compound type (Ⅰ) with tetrahydronaphthyl group as rigid pendant moiety. Our premise for antagonistic activity of molecules was modeled on the capsazepine. the first antagonist for vanilloid receptor. These compounds (Ⅰ) showed less potent antagonistic activity than that of capsazepine. but they were devoid of agonistic activity. (omitted)

  • PDF

Synthesis of Tetrahydrocarbazole Derivatives as Potent β3-Adrenoceptor Agonists

  • Ha, Jae-Du;Kang, Seung-Kyu;Cheon, Hyae-Gyeong;Choi, Joong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1784-1790
    • /
    • 2004
  • A series of 2-(3-chlorophenyl)-2-hydroxyethylamine derivatives containing a tetrahydrocarbazole linker were prepared and evaluated for their ${\beta}_3$-adrenoceptor agonistic activity. Several compounds showed potency comparable to CL-316243.

Alteration of Stress Fiber in Fibroblastic Reticular Cells via Lymphotoxin β Receptor Stimulation is Associated with Myosin (Lymphotoxin β 수용체를 통한 fibroblastic reticular cell의 stress fiber 변화와 myosin의 연관성)

  • Kim, Min Hwan;Kim, Yeon Hee;Choi, Woobong;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.585-593
    • /
    • 2015
  • Stress fiber (SF) alteration is mediated by cellular receptors, which, upon interaction with the extracellular counterpart, signal to the actin cytoskeleton for remodeling. This association is mediated by a variety of scaffold and signaling factors, which control the mechanical and signaling activities of the interaction site. The heterotrimeric transmembrane lymphotoxin α1β2 (LTα1β2), a member of the tumor necrosis factor (TNF) family of cytokines, including soluble homotrimeric lymphotoxin (LT α), plays an important role in lymphoid tissue architecture. Ligation between LTα1β2 and the lymphotoxin β receptor (LTβR) activates signal-cascade in fibroblastic reticular cells (FRCs). We found LTβR stimulation using an agonistic anti-LTβR antibody alone or combined with LTα or TNFα induced changes in the actin and plasticity of cells. To clarify the involvement of myosin underlying the alteration, we analyzed the effect of myosin light chain kinase (MLCK) with an MLCK inhibitor (ML7), the phosphorylation level of myosin light chains (MLC), and the level of phospho-myosin phosphatase target subunit 1 (MYPT1) after treatment with an agonistic anti-LTβR antibody for cytoskeleton reorganization in FRCs. The inhibition of MLCK activity induced changes in the actin cytoskeleton organization and cell morphology in FRC. In addition, we showed the phosphorylation of MLC and MYPT1 was reduced by LTβR stimulation in cells. A DNA chip revealed the LTβR stimulation of FRC down-regulated transcripts of myosin and actin components. Collectively, these results suggest LTβR stimulation is linked to myosin regarding SF alteration in FRC.

Isolation of the ppar-${\gamma}$ ligands from the stem of the Zanthoxylum Schinifolium and their structure activity relationships

  • Nam, Jeong-Bum;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.380.2-380.2
    • /
    • 2002
  • Peroxisome proliferator-activated receptor (PPAR)-$\gamma$ is a nuclear hormone receptor family that plays an important role in the transcriptional regulation of genes in cellular lipid and energy metabolism. In our search for Iigands for PPAR-$\gamma$ from natural resources. two phenylpropanoids. 3.4.5-Trimethoxy cinnamylalcohol (1) and 3.4.5- Trimethoxy cinnamaldehyde (2). were isolated as PPAR-$\gamma$ agonists from the MeOH extracts of Zanthoxylum schinifolium Sieb. & ZUCCo (Rutaceae) by activity-guided fractionation. These two compoundS bind and activated PPAR-$\gamma$ transcriptional activity in a dose dependent manner assessed by ligand-binding assay. While the maximum activities for PPAR-$\gamma$ of these compounds were comparable with that of rosiglitazone. which is currently used in the treatment of Type II diabetes. the potency of these compounds were much weaker than rosiglitazone ($ED_{50}$=t.2$\mu\textrm{M}$) with the $ED_{50}$ values of 9.08 and 4.08 $\mu\textrm{M}$. respectively. To examine the structure-activity relationship of phenylpropanoids. we prepared several phenylpropanoid derivatives and measured the activity. We observed that substituents at 4'- position could playa key role in determining the potency for PPAR-$\gamma$ agonistic activity .

  • PDF

Design and Synthesis of Novel Antidiabetic Agents

  • Lee Joon Yeol;Park Won-Hui;Cho Min-Kyoung;Yun Hyun Jin;Chung Byung-Ho;Pak Youngmi Kim;Hahn Hoh-Gyu;Cheon Seung Hoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.142-150
    • /
    • 2005
  • The synthesis and structure-activity relationships of a novel series of substituted quercetins that activates peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) are reported. The $PPAR{\gamma}$ agonistic activity of the most potent compound in this series is comparable to that of the thiazolidinedione-based antidiabetic drugs currently in clinical use.

The Action of Pentazocine on the Blood Sugar Level, Serum Transaminase and Alkaline Phosphatase Activities in Rabbits (Pentazocine의 가토혈당(家兎血糖), 혈청(血淸) Transaminase 및 Alkaline Phosphatase 활성도(活性度)에 대(對)한 작용(作用))

  • Park, Jung-In;Lee, Woon-Ku;Hong, Kwon-Hee;Kim, Yang-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.47-51
    • /
    • 1973
  • A benzomorphan derivative, pentazocine has both opioid agonistic actions and weak narcotic antagonistic activity. In this paper, authors attempted to study the dose response of pentazocine on the blood sugar level, serum transaminase and alkaline phosphatase activity in rabbits. Eighteen rabbits were devided into 3 groups, and each group were injected with pentazocine 5mg, 15mg, and 30mg/kg respectively. And metabolic effects were investigated measuring the change of blood sugar contents, serum transaminase (S-GOT, S-GPT) activities and alkaline phosphatase activities in rabbits. The results were obtained as follows; 1. Pentazocine significantly increased the blood sugar content in rabbits. 2. Pentazocine significantly increased the serum GOT activity but in the serum GPT activity, it significantly increased in large dose. 3. Pentazocine significantly increased serum alkaline phosphatase activity.

  • PDF

Agonistic Anti-CD137 Monoclonal Antibody Treatment Induces CD11b+Gr-1+ Myeloid-derived Suppressor Cells

  • Lee, Jung-Mi;Seo, Jeong-Hwan;Kim, Yeon-Jeong;Kim, Yun-Sun;Ko, Hyun-Jeong;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2010
  • CD137 (4-1BB/tnfrsf9) has been shown to co-stimulate T cells. However, agonistic anti-CD137 monoclonal antibody (mAb) treatment can suppress $CD4^+$ T cells, ameliorating autoimmune diseases, whereas it induces activation of $CD8^+$ T cells, resulting in diverse therapeutic activity in cancer, viral infection. To investigate the CD137-mediated T cell suppression mechanism, we examined whether anti-CD137 mAb treatment could affect $CD11b^+Gr-1^+$ myeloid-derived suppressor cells (MDSCs). Intriguingly, anti-CD137 mAb injection significantly increased $CD11b^+Gr-1^+$ cells, peaking at days 5 to 10 and continuing for at least 25 days. Furthermore, this cell population could suppress both $CD8^+$ T cells and $CD4^+$ T cells. Thus, this study demonstrated that, for the first time, anti-CD137 mAb treatment could induce $CD11b^+Gr-1^+$ MDSCs under normal conditions, suggesting a possible relationship between myeloid cell induction and CD137-mediated immune suppression.