• Title/Summary/Keyword: Aging heat treatment

Search Result 313, Processing Time 0.023 seconds

Fabrication of AC4A/SiCw composite by squeeze casting (III) - Mechanical characteristics - (용탕단조법에 의한 AC4A/SiCw 복합재료 제조에 관한 연구(III) - 기계적 특성 -)

  • Moon, Kyung-Cheol;Lee, Jun-Hee;Yoon, Eui-Pak
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.160-168
    • /
    • 1994
  • This was studied about mechanical characteristic of AC4A/SiCw 10-30% reinforced composites. Tensile strength of pressed base metal(base metal) with SiCw preform was higher than without pressed base metal(AC4A). If SiCw whisker volume fraction was increased, tensile strength at room temperature was increased. And tensile strength of SiCw 30% was about $35kg/mm^2$. Tensile strength of SiCw 30 % $400^{\circ}C$ at same time aging was the most excellence, about $40kg/mm^2$. The fracture energy value of composite material at three point bending test was higher than AC4A. Dislocation at matrix of composite material was evenly distributed. But dislocation around whisker of composite material was more existed than matrix. The reasom was thought of pile-up around whisker.

  • PDF

Microstructure, Properties and Heat Treatment of Steel Bonded TiC Cermets

  • Farid, Akhtar;Guo, Shiju;Shah, Jawad Ali;Feng, Peizhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.618-619
    • /
    • 2006
  • The binder phase for TiC reinforced steel matrix composite was added in the form of elemental powders and master alloy powders. The microstructures, binder phase variation with TiC content and mechanical properties were evaluated. The addition of a type of binder phase largely effects the microstructure and mechanical properties. The binder phase variation from starting composition was observed with increase in wt% TiC content and this variation was higher when the master alloy powders were used as a binder. The response to heat treatment was decreased with an increase in TiC content due to the shift of binder phase from the starting composition.

  • PDF

Dislocation-particle Interaction in Precipitation Strengthened Ni3(Al, Cr)-C (석출강화된 Ni3(Al, Cr)-C계에서의 전위-석출입자간의 상호작용)

  • Han, Chang-Suck
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • The morphology of deformation induced dislocations in polycrystalline $Ni_3$(Al, Cr) containing $M_{23}C_6$ precipitates has been investigated in terms of transmission electron microscopy(TEM). Fine Polyhedral precipitates of $M_{23}C_6$ appeared in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After deformation at temperature below 973 K, typical Orowan loops were observed surrounding the $M_{23}C_6$ particles. At higher deformation temperatures, the Orowan loops disappeared and the morphology of dislocations at the particle-matrix interfaces suggested the existence of attractive interaction between dislocations and particles. The change of the interaction modes between dislocation and particles with increasing deformation temperature can be considered as a result of strain relaxation at the interface bet ween matrix and particles.

  • PDF

Variation of Aluminum 6056 Alloy Properties with Respect to Heat Treatment and Forging Conditions for Fabrication of Piston Blocks for Automobile (열처리 및 단조조건에 따른 알루미늄 6056 소재의 특성변화 및 자동차의 피스톤 블록 설계)

  • Kim, Min Seok;Jung, Hyung Duck;Park, Hyo young;Choi, Jeong Mook;Kim, Jeong Min;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.552-558
    • /
    • 2015
  • The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of $550^{\circ}C$ for 2 h followed by an aging treatment at $190^{\circ}C$ for 4 h. The microstructures of the heat treated specimen showed that the $Mg_2Si$ phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.

Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology (나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사)

  • Cho, S.H.;Lee, C.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Effects of Alloying Elements on the Properties and Aging Hardening of Al-5%Mg Based Casting Alloys (Al-5%Mg계 주조합금의 물성 및 시효경화특성에 미치는 합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Cho, Jae-Ik;Kim, Hyun-Gil
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • The microstructure of Al-5%Mg based alloy mainly consists of aluminum matrix with a small amount of AlMn phase. The addition of Sc or Zn to the base alloy significantly improved the as-cast tensile strength, while the addition of Fe deteriorated both strength and ductility. Although the Al-5%Mg based alloy was not heat-treatable, aging hardening could be observed in the case that Sc or Zn was added to the base alloy. TEM analysis showed that very fine AlSc or AlMgZn precipitates were formed after T6 heat treatment, resulting in enhanced strength. The corrosion resistance measured as corrosion potential was found to decrease a little by adding Zn, whereas other alloying elements were not clearly influential.

Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy (AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성)

  • H. J. Kim;J. H. Bae;Y. M. Kim;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

Solidification Structure of Superalloy René 80 and Variation of Tensile Properties after Heat-Treatment (초내열합금 René 80의 응고 조직과 열처리 후 인장특성의 변화)

  • Woo, Hanbyeol;Shin, Jongho;Joo, Yunkon;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.678-686
    • /
    • 2020
  • Microstructural characteristics of directionally solidified René 80 superalloy are investigated with optical microscope and scanning electron microscope; solidification velocity is found to change from 25 to 200 μm/s under the condition of constant thermal gradient (G) and constant alloy composition (Co). Based on differential scanning calorimetry (DSC) measurement, γ phase (1,322 ℃), MC carbide (1,278 ℃), γ/γ' eutectic phase (1,202 ℃), and γ' precipitate (1,136 ℃) are formed sequentially during cooling process. The size of the MC carbide and γ/γ' eutectic phases gradually decrease with increasing solidification velocity, whereas the area fractions of MC carbide and γ/γ' eutectic phase are nearly constant as a function of solidification velocity. It is estimated that the area fractions of MC carbide and γ/γ' eutectic phase are determined not by the solidification velocity but by the alloy composition. Microstructural characteristics of René 80 superalloy after solid solution heat-treatment and primary aging heat-treatment are such that the size and the area fraction of γ' precipitate are nearly constant with solidification velocity and the area fraction of γ/γ' eutectic phase decreases from 1.7 % to 0.955 %, which is also constant regardless of the solidification velocity. However, the size of carbide solely decreases with increasing solidification velocity, which influences the tensile properties at room temperature.