• Title/Summary/Keyword: Aging degradation

Search Result 577, Processing Time 0.024 seconds

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.

Therapeutic implication of autophagy in neurodegenerative diseases

  • Rahman, Md. Ataur;Rhim, Hyewhon
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.345-354
    • /
    • 2017
  • Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid ${\beta}$ peptide and ${\alpha}-synuclein$ protein aggregation, as seen in patients with Alzheimer's disease and Parkinson's disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid ${\beta}$ and ${\alpha}-synuclein$ deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.

Rubber Material Development and Performance Evaluation of Diaphragm Seal for Steam Generator Nozzle Dam

  • Woo, Chang-Su;Song, Chi-Sung;Lee, Han-Chil;Kwon, Jin-Wook
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.222-228
    • /
    • 2020
  • Rubber materials, used in nuclear power plants, need high heat-oxidation resistance to curing or cracking under a heat aging environment. This is because they are applied to environments with high temperature, high humidity, and radiation exposure. Nuclear radiation causes additional hardening or degradation, therefore, rubber materials need radiation resistance that satisfies the general and any accidental conditions produced in the power plant. Therefore, in this study, we developed a rubber material with excellent heat and radiation resistance for the diaphragm seal of a nuclear steam generator nozzle dam. The rubber material greatly improved the reliability of the steam generator nozzle dam. In addition, 30 inch and 42 inch diaphragm seals were manufactured using the developed rubber material. A nozzle dam was installed in a nuclear power plant and tested under the same conditions as a steam generator to evaluate safety and reliability. In the future, the performance and safety of diaphragm seals developed through field tests of nuclear power plants will be evaluated and applied to currently operating and new nuclear power plants.

Enhanced Field Emission and Luminescent Properties of Straightened Carbon Nanotubes to be Applied in Field Emission Display

  • Lee, Hyeong-Rag;Kim, Do-Hyung;Kim, Chang-Duk;Jang, Hoon-Sik
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.35-42
    • /
    • 2003
  • The field emission and luminescent properties of carbon nanotubes (CNTs) that were straightened by argon ion irradiation were investigated. Argon ion irradiation permanently straightened both as-grown and screen-printed CNTs (SP-CNTs) in the presence of a strong electric field. The straightening process enhanced the emission properties of as-grown CNT films by showing a decrease in turn-on field, an increase in total emission current, and a stable emission. Recurring problems associated with SP-CNTs, such as bent or/and buried CNTs and the degradation in binder-residue-induced emission, were improved by the permanent straightening of CNTs and protruding CNTs from binders by the irradiation treatment, in addition to its surface cleaning effect. Furthermore, we confirmed that the number of emission sites increases by observing the luminescent properties of CNT films after the straightening. These findings here suggest that ion irradiation treatment is an effective method for achieving uniform field emission and to reduce the electrical aging time.

A Study on the Diagnosis of Treeing Breakdown and Fractal Characteristics Using the Method of Acoustic Enission (음향방출 계측법을 이용한 프랙탈 특성과 트리잉 파괴진단에 관한 연구)

  • 김성홍;심종탁;김재환
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.50-56
    • /
    • 1997
  • As the purpose of the breakdown prediction of three degradation of insulating materials caused by partial discharge occurring at various defects in the polymer insulator itself and at the interfaces between electrodes and the insulating materials. Treeing due to partial discharge os one of the main causes of breakdown of the insulating materials. Recently, the necessity of establishing the way to diagnoses the aging of insulation materials and to predict of insulation breakdown become improtant. The purpose of our work are to use acoustic emission System and fractal dimension and to investigated the treeing phenomena in polymeric insulation under appliec AC voltage 11[kV] with an artificial needleshaped void(1.5[mm]) using the above system.

  • PDF

The Aging Measurement of Water Tree Using AgNO$_3$Solution (AgNO$_3$을 이용한 수트리의 실시간 열화계측)

  • Kim, Duck-Keun;Ooh, Soo-Hong;Lee, Jin;Lee, Eun-Hak;Kim, Tae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.409-412
    • /
    • 1997
  • The phenomenon of water tree degradation of underground distribution power cables is taking place in polymeric insulation materials under the existence of water and application of electric stress, but water tree is not easy to observe, o water tree features in power cables are shown after cutting and dying with methyleneblue. In previous method, it is impossible to acquire continuous treeing data, and when the insulation material has been cut, the micro crack(water tree) has been damaged. In this paper, to overcome these deflects, the etching method is made use of making needle electrode about 170[${\mu}{\textrm}{m}$] diameter, and AgNO$_3$(silver nitrate) solution is used as liquid electrode to accelerate the growth of water trees. As a result of this study, water tree is observed in real-time with microscope. Electrical tree owing to water treeing is initiated at low electric field and grown with discontinuous. Namely, water tree is shown up a different characteristics of tree growth.

  • PDF

A Study on Degradation Pattern of GIS Using Clustering Methode (군집화 기법을 이용한 GIS 열화 패턴 연구)

  • Lee, Deok Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.255-260
    • /
    • 2018
  • In recent years, increasing electricity use has led to considerable interest in green energy. In order to effectively supply, cut off, and operate an electric power system, many electric power facilities such as gas insulation switch (GIS), cable, and large substation facilities with higher densities are being developed to meet demand. However, because of the increased use of aging electric power facilities, safety problems are emerging. Electromagnetic wave and leakage current detection are mainly used as sensing methods to detect live-line partial discharges. Although electromagnetic sensors are excellent at providing an initial diagnosis and very reliable, it is difficult to precisely determine the fault point, while leakage current sensors require a connection to the ground line and are very vulnerable to line noise. The partial discharge characteristic in particular is accompanied by statistical irregularity, and it has been reported that proper statistical processing of data is very important. Therefore, in this paper, we present the results of analyzing ${\Phi}-q-n$ cluster distributions of partial discharge characteristics by using K-means clustering to develop an expert partial discharge diagnosis system generated in a GIS facility.

Proteotoxic Stress and Cell Lifespan Control

  • Cenci, Simone;Pengo, Niccolo;Sitia, Roberto
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • Eukaryotic cells continuously integrate intrinsic and extrinsic signals to adapt to the environment. When exposed to stressful conditions, cells activate compartment-specific adaptive responses. If these are insufficient, apoptosis ensues as an organismal defense line. The mechanisms that sense stress and set the transition from adaptive to maladaptive responses, activating apoptotic programs, are the subject of intense studies, also for their potential impact in cancer and degenerative disorders. In the former case, one would aim at lowering the threshold, in the latter instead to increase it. Protein synthesis, consuming energy for anabolic processes as well as for byproducts disposal, can be a significant source of stress, particularly when difficult-to-fold proteins are produced. Recent work from our and other laboratories on the differentiation of antibody secreting cells, revealed a regulatory circuit that integrates protein synthesis, secretion and degradation (proteostasis), into cell lifespan determination. The apoptotic elimination - after an industrious, yet short lifetime - of terminal immune effectors is crucial to maintain immune homeostasis. Linking proteostasis to cell death, this paradigm might prove useful for biotechnological purposes, and the design of novel anti-cancer therapies.

New anti-wrinkle cosmetics

  • Lee, Kang-Tae;Lee, Sun-Young;Jeong, Ji-Hean;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-79
    • /
    • 2002
  • In the aged skin especially in the face and eyelid, deep and slight wrinkles are one of the remarkable phenomena of aging and the cause of wrinkle is various. Among the cause of wrinkles an oxidative stress plays an important roles in wrinkle formation process. It caused the lipid peroxidation of cell membrane, the increase of the MMPs(MatrixMetalloProteinase) gene expression and cellular DNA damage. These ROS induced materials may cause the degradation of collagen matrix system in the dermis and cause the formation of skin wrinkle. So, it is very important for protecting skin wrinkle formation to regulate ROS activity. In this study, we developed one active ingredient having multi functional activities such as activation of collagen synthesis, inhibition of MMPs activity, lipid peroxidation and free radical scavenging activity and inhibition of free radical induced DNA damage in vitro. Pericarpium castaneae extracts showed collagen synthesis increase in Normal Human Fibroblast and the inhibition of elastase activity (IC$\_$50/ of Elastase: 43.9$\mu\textrm{g}$/㎖). It showed also anti-oxidative activity (IC$\_$50/ : 48$\mu\textrm{g}$/㎖) and free radical scavenging activity(IC$\_$50/: 7.6$\mu\textrm{g}$/㎖). Conclusively, Pericarpium castaneae extracts may be used as an ingredient for new anti-wrinkle cosmetics.

Study on analog-based ex-core neutron flux monitoring systems of Korean nuclear power plants for digitization

  • Kim, Young Baik;Vista, Felipe P. IV;Chong, Kil To
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2237-2250
    • /
    • 2021
  • The analog-based Ex-core Neutron Flux Monitoring System (ENFMS) in Korean Nuclear Power Plants (NPPs) has been performing its intended functions successfully for a long time. On the other hand, the primary concern with the extended use of analog systems is the aging effect, such as mechanical failures, environmental degradation, and obsolescence. The transition to a digital-based Man-Machine Interface Systems (MMIS) in Korea and other countries has been accelerating, but some systems are still analog-based IC systems, such as the ENFMS in APR1400 NPPs. Digitalized ENFMS can become a reality using computers and microprocessors owing to the progress in digital electronics and information technology. This paper presents the result of the first phase of the research on the digitalization of the ENFMS signal processing electronics for NPPs operated or produced in Korea. It has two main parts: (1) review engineering bases of ex-core neutron flux monitoring system, including nuclear engineering, instrumentation techniques, and analog and digital signal processing techniques, and (2) analysis of analog signal processing electronics of ENFMS for OPR1000 and APR1400 power plants. They are prerequisite to the second phase of the research which is the detailed implementation of the digitalization.