• 제목/요약/키워드: Aging bridges

검색결과 82건 처리시간 0.023초

Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges

  • Ghosh, Jayadipta;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.649-673
    • /
    • 2012
  • Recent studies have highlighted the importance of accounting for aging and deterioration of bridges when estimating their seismic vulnerability. Effects of structural degradation of multiple bridge components, variations in bridge geometry, and comparison of different environmental exposure conditions have traditionally been ignored in the development of seismic fragility curves for aging concrete highway bridges. This study focuses on the degradation of multiple bridge components of a geometrically varying bridge class, as opposed to a single bridge sample, to arrive at time-dependent seismic bridge fragility curves. The effects of different exposure conditions are also explored to assess the impact of severity of the environment on bridge seismic vulnerability. The proposed methodology is demonstrated on a representative class of aging multi-span reinforced concrete girder bridges typical of the Central and Southeastern United States. The results reveal the importance of considering multiple deterioration mechanisms, including the significance of degrading elastomeric bearings along with the corroding reinforced concrete columns, in fragility modeling of aging bridge classes. Additionally, assessment of the relative severity of exposure to marine atmospheric, marine sea-splash and deicing salts, and shows 5%, 9% and 44% reduction, respectively, in the median value bridge fragility for the complete damage state relative to the as-built pristine structure.

천연고무받침의 열 노화가 교량 내진성능에 미치는 영향 (Effects of Thermal Aging of Natural Rubber Bearing on Seismic Performance of Bridges)

  • 오주;정희영
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.855-864
    • /
    • 2013
  • 지진격리장치로서 천연고무받침의 동적 특성은 주재료인 고무의 동적거동과 비선형 성질에 의존하고 있다. 역학적이나 환경적인 영향으로 인해 고무재료에 노화가 진행되고 결국에는 손상이 불가피하게 발생하게 된다. 고무재료의 노화에 주원인은 높은 온도에서 반응열로 인한 산화반응으로 알려져다. 이에 따라 천연고무받침에 대한 가속 열 노화실험을 수행하여 열 노화 전 후에 대해 받침의 특성값을 상호 비교하였다. 실험 결과 열 노화 현상은 전단강성과 에너지 감쇠 그리고 등가감소계수에 영향이 있음을 알 수 있었다. 또한 열 노화에 의한 동적특성의 저하를 실제 교량에 적용하여 천연고무받침의 열 노화가 교량의 내진성능에 미치는 영향을 수치해석을 통해 비교분석하였다. 그 결과 천연고무받침에 대하여 열 노화에 따른 기본 특성변화가 교량의 내진성능에 미치는 영향은 크지 않음을 알 수 있었다.

지능형 교량 안전성 예측 엣지 시스템 (Intelligent Bridge Safety Prediction Edge System)

  • 박진효;이태진;홍용근;윤주상
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권12호
    • /
    • pp.357-362
    • /
    • 2023
  • 교량은 중요한 교통 인프라지만 다양한 환경적 요인과 지속적인 교통 부하로 손상 및 균열을 겪게 되며, 이러한 요인들은 교량의 노후화를 가속화시킨다. 현재 건설한 지 오래된 교량이 많아지면서 안전성을 보장하고 노후화를 진단하기 위한 시스템의 필요성이 대두되고 있다. 이미 교량에서는 실시간 또는 주기적으로 교량의 상태를 모니터링하기 위해 구조물 건전도 모니터링(SHM) 기술이 활용되고 있다. 이 기술과 함께 인공지능과 사물인터넷 기술을 활용한 지능형 교량 모니터링 기술 개발이 진행 중이다. 본 논문에서는 노후화된 교량의 유지관리를 위해 고속 푸리에 변환과 차원 축소 알고리즘을 활용한 교량 안전성을 예측 엣지 시스템 기법을 연구한다. 특히, 기존 연구와는 다르게 실제 교량에서 수집된 센서 데이터를 이용하여 데이터셋을 형성하고 교량의 안전성을 확인할 수 있는지 알아본다.

납고무받침의 노화가 교량의 내진성능에 미치는 영향 (Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges)

  • 박성규;오주
    • 대한토목학회논문집
    • /
    • 제32권2A호
    • /
    • pp.109-116
    • /
    • 2012
  • 지진격리장치로서 납고무받침의 동적 특성은 주재료인 고무재료의 동적거동과 비선형 성질에 의존하고 있다. 역학적이나 환경적인 영향으로 인해 고무재료에 노화가 진행되고 결국에는 손상이 불가피하게 발생하게 된다. 고무재료의 노화의 주원인은 높은 온도에서 반응열로 인한 산화반응으로 알려져다. 이에 따라 납고무받침의 가속 열 노화실험을 수행하여 열 노화 전 후에 대해 받침의 특성값을 상호 비교하였다. 실험 결과 열 노화 현상은 전단강성과 에너지 감쇠 그리고 등가감소계수에 영향이 있음을 알 수 있었다. 또한 열 노화에 의한 동적특성의 저하를 실제 교량에 적용하여 납고무받침의 열 노화가 교량의 교각의 내진성능에 미치는 영향을 수치해석을 통해 비교분석하였다. 해석결과 납고무받침에 대하여 열 노화에 따른 기본 특성변화가 교량의 내진성능에 미치는 영향은 크지 않음을 알 수 있었다.

3-dimensional analysis about the effects of aging and risk factors on changes in oral environment

  • Yoon, Yong;Kim, Yong-Gun;Lee, Sang-Kyu;Lee, Jae-Mok
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권2호
    • /
    • pp.75-80
    • /
    • 2019
  • PURPOSE. The purpose of this study is to investigate the effects of aging and various risk factors on the oral environment and to analyze them in 3-dimensions. MATERIALS AND METHODS. A total of 800 patients were enrolled in this study, and subjects were divided into 4 groups by age-under 55, 56 - 65, 66 - 75, and over 76. Based on their most recent visit, the number of crowns, bridges, implants, and the remaining natural teeth were recorded. Smoking habits, along with presence of diabetes and hypertension, were surveyed, as risk factors were also set as a variable. Comparisons among the groups or within the groups were performed by independent t-test, and one-way and two-way ANOVA. Kruskal-Wallis test and Mann-Whitney U test were used for analysis. It was assumed to be statistically significant when P value is below .05. RESULTS. Changes in the number of crowns, bridges, implants, and the remaining natural teeth by age were statistically significant. When we examined the effect of risk factors on the change of variables with age, hypertension was found to affect the number of bridges. Diabetes and smoking were found to affect the number of the remaining natural teeth. The other variables were not statistically significant. CONCLUSION. Aging is considered to be an important variable affecting the change of oral environment. Among the risk factors, the presence of smoking habit and diabetes is thought to have a great influence on the change of the number of the remaining natural teeth.

PSC 교량의 프리스트레스 손실에 관한 해석적 연구 (Analytical Study on the Prestress Losses of Prestressed Concrete Bridges)

  • 김운학;라정균;김태훈;신현목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.131-138
    • /
    • 2003
  • This paper presents an analytical prediction of the prestress losses of prestressed concrete bridges. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete bridges considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. The proposed numerical method for the prestress losses of prestressed concrete bridges is verified by comparison with reliable experimental results.

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

국내 콘크리트 교량에 적합한 비파괴 시험법 적용에 관한 연구 (A Study on the Application of Non-destructive Test for Concrete Bridges in Korea)

  • 이학은;윤영수;이병철;김영민;정우용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.737-742
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. But the application of this test has not still accomplished to guarantee perfectly the durability of the concrete bridges in Korea. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength. Also, this paper recommend the relationships as the aging and as the element.

  • PDF

규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발 (Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method)

  • 정세환;임소람;지석호
    • 한국BIM학회 논문집
    • /
    • 제6권2호
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.