• Title/Summary/Keyword: Aging acceleration

Search Result 88, Processing Time 0.024 seconds

Experimental Evaluation on Degradation Characteristics of Epoxy Coating by Using Adhesion Force and Impedance (부착력과 임피던스를 이용한 에폭시 도장재 열화 특성에 관한 실험적 평가)

  • Nah, Hwan-Seon;Kim, Noh-Yu;Kwon, Ki-Joo;Song, Young-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • The purpose of this paper is to quantitatively investigate aging state of epoxy coating on containment structure at nuclear power plant. In order to evaluate an physical bonding of the epoxy coating, adhesion test was performed on a degraded epoxy coating on concrete specimens fabricated by accelerated aging experiment. In addition, impedance data by ultrasonic test were measured to compare with adhesion data. From almost 50 % of the specimens, aging phenomena of epoxy coating such as pin hole, blistering was discovered. To improve reliability on quality degradation of epoxy, co-relation between two kinds of different data was analyzed. By tracing co-related these data, it was possible to figure out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

Partial Discharge Resistance According to Frequency Acceleration Deterioration of Epoxy/Layered Silicate Nanocomposites (에폭시/층상실리케이트 나노콤포지트의 주파수 가속열화에 따른 부분방전 저항성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1694-1699
    • /
    • 2013
  • Frequency accelerated partial discharge resistance (PDR) aging of epoxy/layered silicate nanocomposite with 1.5wt % additions of layered silicate was investigated in comparison with that of epoxy without layered silicate in terms of PD(partial discharge) erosion depth. It was found that the change in the erosion depth is far smaller in specimens with layered silicate than those without layered silicate nano particles. Frequency acceleration can be done from 60Hz to 1000Hz. But the depth of erosion is less proportional to frequency. Acceleration factor is almost 2 times between 500Hz and 1000Hz, but it is much less than about 8.3 times between 60Hz and 500Hz. This superior PD resistance is caused by the presence of nanofillers, anano-effect due to closely packed nanofillers, and strong chemical bonds at layered silicate nanofillers /resin interfaces.

Aging Effect of Bio-inspired Artificial Basilar Membrane with Piezoelectric PVDF Thin Film

  • Kim, Wan Doo;Park, Su A;Kim, Sang Won;Kwak, Jun-Hyuk;Jung, Young Do;Hur, Shin
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.292-296
    • /
    • 2015
  • Biomimetic artificial basilar membrane being a core part of artificial cochlear requires performance evaluation through aging test. To evaluate the aging properties of PVDF piezoelectric membrane used for artificial basilar membrane, its mechanical properties such as tensile strength and elastic modulus and piezoelectric property such as piezoelectric constant were measured. The aging test conditions and acceleration constants were calculated based on Arrhenius model. The changes in tensile strengths and elastic moduli measured were less than 10~20% after aging test equivalent for 10 years. The piezoelectric constants were decreased drastically to 80% of its initial value in the early stage of the aging test and expected to decrease slowly down to 65% over 10 years. The experimental results show the reliability of totally implantable novel artificial cochlear and will contribute its commercialization.

Accelerated Aging of Electric Arc Funace Slag with CO2 Nano Bubble by X-Ray Diffraction (X-선 회절 분석을 통한 CO2 나노버블수 침지 전기로 슬래그 촉진 에이징 검토)

  • Lim, Chang-Min;Im, Geon-Woo;Kim, Young-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.61-62
    • /
    • 2023
  • In this study, the steel slag was immersed in CO2 nano-bubble water by Electric arc funace it was accelerated aging was reviewed through XRD analysis. The main minerals of the electric furnace oxidized slag were spinel and gehlenite, and there was no change with the number of CO2 nano-bubbles. Minerals such as larnite, calcio-olivine, agnetite, calcite, and spinel were distributed in electrically reduced slag, and the content of calcite more than doubled with CO2 nano-bubble immersion. Therefore, it is judged that the acceleration aging of Electric arc funace reduced slag is effective according to the immersion of CO2 nano-bubble.

  • PDF

Life Expectancy Estimation of the Propellants KM10 using High Temperature Acceleration Aging Tests and Stockpile Analysis Test (고온가속노화시험법과 저장분석시험법을 이용한 추진제 KM10의 기대수명 평가)

  • Cho, Ki-Hong;Kim, Eui Yong
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.695-699
    • /
    • 2010
  • The propellant KM10, a single propellant manufactured from nitrocellulose, was known to cause natural degradation phenomena at long term storage. In this study, the self-life was estimated using high temperature acceleration aging tests and stockpile analysis test. For the life expectancy estimation, Arrhenius equation and Berthelot equation were used in the high temperature acceleration tests, and the first order regression was used in the Stockpile analysis test. The self-life of propellant KM10 using the Arrhenius equation and Berthelot equation showed significantly different results as 43.73, 16.53 years in the high temperature acceleration test, and it showed 42.94 years in the Stockpile analysis test. The value of self-life predicted by Arrhenius equation was reasonable when compared with the result of E. R. Bixon.

Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments (다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.385-392
    • /
    • 2014
  • The isolators have been generally used to reduce a seismic force. If the isolators apply to the nuclear power plants(NPPs), the durability and capacity for the structures and equipments should be ensured during the life time. In this study, the long-term behavior of isolated NPPs was analyzed for ensuring the seismic safety. The properties of isolator due to the age-related degradation were analyzed. And the seismic behavior of isolated buildings was analyzed by considering the aging of rubber bearings in different temperature environments. According to the analysis results, the natural frequency of structures was increased with time. But the maximum acceleration and maximum displacement of isolated structures have not changed significantly. Although the damaged of structure did not occurred by aging of isolators, it was presented that the spectral acceleration at the target frequency of isolated structure increased with the temperature. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the temperature-dependancy of rubber material.

A Study on Acceleration Aging Characteristics of B-KNO3 Igniter (B-KNO3 점화제의 가속 노화 특성 연구)

  • Paik, Jong Gyu;Ryu, Byung Tae;Kwon, Mira
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • This research investigated the aging properties of the $B-KNO_3$ system as the igniter. The $B-KNO_3$ system showed the degradation in ignition properties depending on the method and period of storage. It should be found out the cause of the degradation to predict the reliability of the igniters. The changes of the properties by the degradation after aging tests were analyzed by microstructure analysis, XRD analysis and thermal analysis using DSC. It was found out that the lattice parameters of the $KNO_3$ as the oxidizer in the ignition system was changed into the JCPDS values as the aging time increased. Conclusively, the changes of the crystal structure of oxidizer affected the activation energy increasing as aging time increased.

Space Charge Behavior of Oil-Impregnated Paper Insulation Aging at AC-DC Combined Voltages

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.635-642
    • /
    • 2014
  • The space charge behaviors of oil-paper insulation affect the stability and security of oil-filled converter transformers of traditional and new energies. This paper presents the results of the electrical aging of oil-impregnated paper under AC-DC combined voltages by the pulsed electro-acoustic technique. Data mining and feature extractions were performed on the influence of electrical aging on charge dynamics based on the experiment results in the first stage. Characteristic parameters such as total charge injection and apparent charge mobility were calculated. The influences of electrical aging on the trap energy distribution of an oil-paper insulation system were analyzed and discussed. Longer electrical aging time would increase the depth and energy density of charge trap, which decelerates the apparent charge mobility and increases the probability of hot electron formation. This mechanism would accelerate damage to the cellulose and the formation of discharge channels, enhance the acceleration of the electric field distortion, and shorten insulation lifetime under AC-DC combined voltages.

Accelerated Aging of Tracking Phenomena Using Weibull Distribution (와이블 분포함수를 이용한 트래킹 현상의 가속열화)

  • Lim, Jang-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.137-138
    • /
    • 2008
  • In this paper, the statistical judgement using IR camera was discussed and investigated. Acceleration experiments were carried out for the possibility of weibull distribution and then, the acquired data were replaced with quantitative value for safety diagnosis of distribution lines.

  • PDF