• Title/Summary/Keyword: Aggregate evaluation

Search Result 412, Processing Time 0.024 seconds

Performance Evaluation for Dry Shrinkage of Dry Mortar Using Artificial Aggregate Made from Circulating Fludized Bed Combution Ash and Modified CaO Type Expansive Admixture (개질 CaO 팽창재 활용 CFBC 인공잔골재 건조 모르타르의 건조수축 성능평가에 관한 연구)

  • Park, Ji-Sun;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • The purpose of this study is to investigate the feasibility of CFBC artificial fine aggregate as a substitute for natural aggregate used in dry mortar. The basic performance of the flow, compressive strength and dry shrinkage of the dry mortar was evaluated. Four types of test dry mortar specimens using natural aggregate without expansion admixture, a specimen with modified CaO expansion admixture and natural aggregate, a specimen with modified CaO expansion admixture and CFBC artificial fine aggregate, and a specimen using CFBC artificial fine aggregate without modified CaO expansion admixture were evaluated respectively. As a result of evaluation of drying shrinkage performance at 20th day of age, the dry shrinkage performance of the specimen using modified CaO expansion admixture was found to be the highest at $250{\times}10^{-6}$. On the other hand, the specimen containing the modified CaO expansion admixture with CFBC artificial aggregate exhibited a shrinkage of $410{\times}10^{-6}$, and the drying shrinkage of specimen using natural fine aggregate without expansion admixture was $450{\times}10^{-6}$. When the modified CaO expansion material was used, and exhibited performance equal to or higher than that of the shrinkage-drying property.

Evaluation of the Non-point Source Treatment Facility using the porous lightweight aggregate and the recycled aggregate (다공성 경량골재 및 순환골재를 이용한 비점오염원 저감시설의 처리효율 평가)

  • Kang, Young-Heoun;Jang, Dae-Chang;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.735-741
    • /
    • 2009
  • This study intends to evaluate the efficiency of non-point source reduction technique by using the porous lightweight and recycled aggregate which microorganism is seeded. In case of infiltration velocity 30~70 mm/hr in high concentration of influent, it is indicated that SS was 40~94%, COD 44~91%, BOD 4~91%, TN 1.2~66%, TP 7~70% of removal efficiency. Removal efficiency is good in infiltration velocity 30 > 50 > 70㎜/hr order. Therefore, the non-point source treatment facility filled with lightweight and recycled aggregate using microbial seeding shows higher removal efficiency than a conventional sand and gravel. We confirm that the function and efficiency are improved significantly and applied to treat non-point sources.

An Experimental Study on the Evaluation of Porous Concrete using Industrial By-products of Planting Factory (산업부산물을 이용한 포러스콘크리트의 식생능력평가에 관한 연구)

  • 박승범;권혁준;서대석;윤덕열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.779-784
    • /
    • 2002
  • Porous concrete with a great deal of continuous porosity enables to contain water and to pass air freely through firmly hardened material, and allow necessary nutrients to reach roots of vegetation. Therefore, this paper deals with the voluntary properties and efficiency for planting of plant porous concrete. The results of experiment showed that void volumes were 17% to 31%, and compressive strength ranged between 80kgf/cm$^2$ and 180kgf/cm$^2$ when the ratio of the paste to aggregate was 0.3-0.5 When the aggregate size are 20-30mm, the paste to aggregate ratio is 0.3, and the length of Paranial Ryegress came up as 32cm. Ut supra the efficiency of planting goes through Paranial Ryegrass in result the length of plant are in compliance with void volume and aggregate size.

  • PDF

Physical Properties of Polymer-Modified Mortars Using Waste Concrete Fine Aggregate (재생잔골재를 사용한 폴리머 시멘트 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.793-797
    • /
    • 2005
  • This study was undertaken to examine the feasibility of recycling waste concrete fine aggregate to prepare polymer-modified mortars. The specimens of polymer-modified mortars were prepared by using styrene-butadiene rubber(SBR) latex and polyacrylic ester(PAE) emulsion as a polymer modifier. The formulations for specimens were prepared with various replacing ratios of waste concrete fine aggregates as parts of standard sand and various polymer cement ratios. For the evaluation of the performance of polymer-modified mortars, various physical properties were investigated. As a results, water cement ratio of polymer-modified fresh mortars increased with an increase of recycled fine aggregate, but decreased with an increase of polymer modifiers. The compressive and flexural strengths of polymer-modified mortars decreased with an increase of recycled fine aggregate, but flexural strengths increased with an increase of polymer modifiers.

  • PDF

Mechanical Properties of Carbon Fiber Reinforced Porous Concrete for Planting

  • Park Seung-Bum;Kim Jeong-Hwan
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2002
  • The mechanical properties of fiber reinforced porous concrete for use as a planting material were investigated in this study. Changes in physical and mechanical properties, subsequent to the addition of carbon fiber and silica fume, were studied. The effects of recycled aggregate were also evaluated. The applicability as planting work concrete material was also assessed. The results showed that there were no remarkable changes in the void and strength characteristics following the increase in proportion of recycled aggregate. Also, the mixture with 10% silica fume was found to be the most effective for strength enforcement. The highest flexural strength was obtained when the carbon fiber was added with $3\%$. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its usage for vegetation showed that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  • PDF

Evaluation of TTP Applicability of Steel Slag Aggregate (재강슬래그 골재의 TTP 적용성 검토를 위한 연구)

  • 이광교;양은익;한상훈;최중철;김명유
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.120-123
    • /
    • 2003
  • In order to evaluate the applicability of steel slag aggregates for tetrapod concrete, the properties of concrete as structural material were investigated. The biochemical research of marine concrete using steel slag aggregates was also carried out. The tested concrete properties are slump, air content, compressive strength, splitting tensile strength, elastic modulus, carbonation, hydration heat, freezing and thawing, sulfate attack, drying shrinkage, etc. The biochemical experiments are carried to research the propagation and reproduction of seaweeds and survival of bottom dwelling species. According to the experimental results, the steel slag aggregate content did not have a significant effect on compressive strength, splitting tensile strength and elastic modulus. The durability of concrete was not influenced by the steel slag aggregate content. From the biochemical research, steel slag aggregate can be evaluated as the material that is ideally suited for promoting propagation and reproduction of seaweeds and survival of bottom dwelling species.

  • PDF

A Study on Design of Mix Proportion for Concrete using Recycled Aggregate (순환골재를 이용한 콘크리트의 배합설계에 관한 연구)

  • Park, Won-Jun;Noguchi, Takafumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.101-103
    • /
    • 2011
  • Various desired performances of concrete cannot be always obtained by current conventional mix proportion methods for recycled aggregate concrete (RAC). This paper suggests a new design method of mix proportion for RAC to reduce the number of trial mixes using genetic algorithm (GA) which has been an optimization technique to solve the multi-object problem. In mix design method by GA, several fitness functions for the required properties of concrete, i.e., slump, strength, price, and carbonation speed coefficient were considered based on conventional data or fitness function. As a result, various optimum mix proportions for RAC that meet required performances were obtained and the risk evaluation was also conducted for selected mixtures.

  • PDF

Evaluation on the Properties of Mortar using Waste Shells for Partical Replacement of Fine Aggregate (패각류를 잔골재 대체재로 사용한 모르터의 기초물성 평가)

  • Kim, Ji-Hyun;Cho, Kwang-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.148-149
    • /
    • 2013
  • Recently, the construction industry in South Korea, has experienced many difficulties in lack of supply with construction materials. Since waste shells can be possibly used as replacement materials of fine aggregate, the successful application can resolve, to some extent at least, the economic problems and environmental problems. In this research, the basic physical properties of the mortar which was used as fine aggregate substitute (clam, cockle, manila clam, oyster) were evaluated. According to the experimental results, the absorption rate and compressive strength of samples with various shells were equivalent to that of plain mortar. The mortar which replaced 25% of oyster shell with sand showed approximately 30% lower compressive strength and twice as much absorption as plain mortar. It was found that waste shells can be used as replacement materials of fine aggregate, but the oyster shell requires further experimental works in order for its successful application.

  • PDF

Evaluation of Strength of Normal and Lightweight Aggregate Concrete Using Ultrasonic Velocity Method in Early Age (초기 재령에서 초음파 속도법을 활용한 보통 및 경량 골재 콘크리트의 강도 발현 평가)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Ryu, Jung-Rim;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.55-56
    • /
    • 2023
  • Recently, large and high-rise buildings are increasing, and accordingly, concrete weight reduction is required. Lightweight aggregate concrete can provide economic feasibility and large space, but safety can be reduced due to problems such as low strength and poor durability. Since the development of such low strength of concrete is important in the early construction stage, it is necessary to evaluate the vertical formwork demolding period at the early age. The correlation was analyzed by measuring the compressive strength and ultrasonic pulse velocity. As a result, the ultrasonic pulse rates of normal and lightweight aggregate concrete at the time of 5 MPa expression, which is the time of vertical mold deformation, were 3.07 km/s and 2.77 km/s for W/B 41, and 2.89 km/s and 2.73 km/s for W/B 33.

  • PDF

Initial Performance Evaluation of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트포장의 초기 공용성 평가)

  • Kim, Young-Kyu;Choi, Don-Hwa;Lee, Seung-Woo;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2010
  • Surface of fine-size exposed aggregate Portland cement concrete pavements is consists of exposed coarse aggregate by removing upper 2~3mm mortar of concrete slab. Fine-size exposed aggregate PCC pavements have advantages of maintaining low-noise and adequate skid-resistance level during the performance period. In order to provide the successful exposed concrete aggregate pavement, uniform distribution of the coarse aggregate on pavement surface through adequate the mix design and exposing method. In this study, evaluated initial performance of fine-size exposed aggregate PCC pavement by experimental construction. And it was known that fine-size exposed aggregate concrete pavement which can reduce the noise and maintain the adequate level of skid resistance and strength.