• Title/Summary/Keyword: Aggregate Factor Proportions

Search Result 13, Processing Time 0.023 seconds

Economic Effects of Foreign Workers and Immigrants in Korea (외국인력 및 이민 유입의 경제적 영향)

  • Choi, Kyungsoo
    • KDI Journal of Economic Policy
    • /
    • v.34 no.2
    • /
    • pp.95-137
    • /
    • 2012
  • Inflow of foreign workers and immigrants increase the supply of unskilled labor in the economy. In measuring their impacts, an impact evaluation method produces unreliable estimates because a control group independent from their impacts is hardly found within the economy. This study adopts an aggregate factor proportions approach and measures the impacts by estimating the effects of skills proportion changes in labor supply on relative wages. The estimation uses two and three skills groups categorized by education levels. The study reveals that foreign workers and immigrants contribute to economic growth by a small margin while they significantly widen the wage gap between native skilled and unskilled workers. The result is based upon the fact that the existing foreign workers and immigrants are predominantly the least skilled groups. The estimates can be applied in predicting the impacts of labor inflow from North Korea which always remains as a possibility in Korea.

  • PDF

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.

Strength and Durability Properties of Recycled Polymer Concrete Using Unsaturated Polyester Resin and Recycled Aggregates (불포화폴리에스터 수지와 재생골재를 이용한 재생 폴리머 콘크리트의 강도 및 내구 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.97-103
    • /
    • 2009
  • This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10% and 12%). Tests for the compressive and flexural strength, freezing and thawing and durability for 20% sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42% and 94~99, respectively.

Factors affecting the properties of recycled concrete by using neural networks

  • Duan, Zhen-Hua;Poon, Chi-Sun
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.547-561
    • /
    • 2014
  • Artificial neural networks (ANN) has been proven to be able to predict the compressive strength and elastic modulus of recycled aggregate concrete (RAC) made with recycled aggregates (RAs) from different sources. However, ANN is itself like a black box and the output from the model cannot generate an exact mathematical model that can be used for detailed analysis. So in this study, sensitivity analysis is conducted to further examine the influence of each selected factor on the output value of the models. This is not only conducive to the determination and selection of the more important factors affecting the results, but also can provide guidance for researchers in adjusting mix proportions appropriately when designing RAC based on the variation of these factors.

A Study on the Freezing and Thawing Resistance of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 동결융해 저항성에 관한 연구)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.331-336
    • /
    • 1999
  • Permeable polymer concrete in this study is one of the environment conscious concrete that can be applied at road, side walks and river embankment, etc. The purpose of this study is to evaluate the effects of mix proportions such as resing content, filler-binder ratio and aggregate ratio on the freezing and thawing resistance of permeable polymer concrete. The permeable polymer concrete are prepared with the resin ratio of 5%, 6% and 7%, filler-binder ratio of 0, 0.5 and 1.0, and 2.5~5mm sized aggregate ratio to standard sand of 10:10, 10:20, 20:10 and 20:20. It is tested for freezing and thawing test according to ASTM C 666092, and then, weight change, length change, relative dynamic modulus, durability factor, and compressive and flexural strengths after test are measured. From the test results, the resistance to freezing and thawing of permeable polymer concrete increased with increase the resing content, filler-binder ratio and fine aggregate ratio.

  • PDF

Efficient recycling strategies for slurry TBM excavated soil

  • Sung-Min Nam;Joon-Shik Moon;Junyoung Ko;Hyoungseok Oh
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.603-609
    • /
    • 2024
  • In downtown subway project most of excavated soil is discarded externally, whereas in road construction excavated soil is used as filling material and management of surplus soil becomes important factor for success of the project. Excavated materials from slurry shield TBM are discharged through discharge pipe to slurry treatment plant and excavated soil mixed with bentonite are separated in separation plant by grain size. Fine material has been discarded together in filter cake without recycling. Its volume can vary according to geologic condition but statistically fine material as filter cake is about 5%~30% out of overall excavated volume. However, filter cake is non-toxic and can be recycled when mixed in the appropriate proportions with coarse aggregate. Therefore, in this study, utilization of excavated soil from a slurry shield TBM were examined and lab tests were conducted to find the proper way for mixing filter cake and aggregate to be recycled as fill material for road construction.

Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete (라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

Study on engineering properties of ready-mixed soil and slag

  • Chen, Tung-Tsan;Ho, Chun-Ling;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.531-538
    • /
    • 2018
  • The slag through sieve #4 replaced the natural fine aggregate in different proportions (0-50%) to make ready-mixed soil and slag (RMSAS). The fresh properties studied, and the concrete specimens were produced to test the hardened properties at different ages. Results showed that the workability of RMSAS decreases when the replacement increases. The unit weight increases with the replacement. The setting time extends when the replacement decreases and shortens when the replacement increases. The compressive strength, ultrasonic pulse velocity and hammer rebound value increase with the replacement. However, the high-replacement results decrease because of the expansion factor at late age. Resistivity is close and less than $20k{\Omega}-cm$. After the industrial of steelmaking by-products are processed properly, they can be used in civil engineering, not only as a substitute for natural resources and to reduce costs, but also to provide environmental protection.