• Title/Summary/Keyword: Aggregate Account

Search Result 72, Processing Time 0.025 seconds

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

A Study on the Use of Parking Lots and Improvement Methods of Land Supply in Public Development Zones (공공개발지구 내 주차장용지의 이용실태와 토지공급방법 개선방안 연구)

  • Park, Chang Yul;Kim, Si Jin
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.13-30
    • /
    • 2019
  • Parking lot within housing site contains public interest of relieving parking space shortage problem and subject to public restriction. If auctioned off at higher price by excessive competition in general competitive bid for land bidders, the development of parking lot will be made against its original purpose supply. The core issue is that a bid price is quite often to be blown out of proportion by 150%~ 250% due to extreme competition and, could face serious problem if a winning bidder runs sale business. If it is rental business, although about 30% of the total floor space of the whole building to be used as neighborhood facilities, too high winning bid price cause to lose transparency. In case of sale at aggregate buildings, most business operators would sell 30% of the neighborhood facilities, spare the parking lot and manages thereof separately. According to Aggregate Buildings Act, neighborhood facilities are allowed for individual registration and ownership of parking lot by business operator or designated person by business operator. In this case, the parking lot becomes 70% of the total floor space of the whole building and 70% of the land share which makes the mortgage very valuable and easier for business operator to get financial loan. There used to be many cases such as owners of neighborhood facilities (aggregate buildings partial owners) who run parking lot to repay their loan running parking lot to repay loan, but found that very tough and reached auction and relatively disadvantaged. For parking lot within housing site, it is recommend to exclude the public factors that land has and take into account of public restriction in area (housing site). Business opportunity for operators and protection of property rights for buyers in aggregate buildings, land supply method is recommended to replace from highest bid method into draw or private contract. In terms of price, supply at estimated price (construction price) and restriction on usage (Co-ownership of parking lot) proposals are submitted.

Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method

  • Lee, Jong-Han;Lee, Jong-Jae;Cho, Baik-Soon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete. However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124 data sets with eleven parameters: nine concrete composition parameters (the ratio of water-cement, the percentage of fine and coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

Scheduling with Heterogeneous QoS Provisioning for Indoor Visible-light Communication

  • Dong, Xiaoli;Chi, Xuefen;Sun, Hongliang;Zhu, Yuhong
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Visible-light communication (VLC) combined with advanced illumination can be expected to become an integral part of next-generation communication networks. One of the major concerns in VLC implementation is developing resource-allocation schemes in a multi-user scenario. However, the scheduling for heterogeneous quality of service (QoS) traffic has not been studied so far, for the indoor VLC downlink system. In this paper, we creatively introduce effective-bandwidth and effective-capacity theory into the multi-user scheduling (MUS) problem, to guarantee the user's statistical delay QoS. We also take account of the aggregate interference (AI) in the indoor VLC downlink system, and analyze its impact on the user-centric MUS problem for the first time. Simulations show that the AI has a nonnegligible influence on the scheduling result, and that the proposed scheduling scheme could guarantee the user's QoS requirement under the premise of ensuring sum capacity.

Efficient Unit-Water Management Method for Stabilizing the Quality of Ready-mixed Concrete (레미콘 품질 안정화를 위한 효율적인 단위수량 관리 방안)

  • Choi, Sung-Woo;Ryu, Deug-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.327-328
    • /
    • 2021
  • In the manufacturing process of ready-mixed concrete, quantity management directly affects the workability and strength of concrete. Therefore, water quantity is the most important management factor for water quality control of ready-mixed concrete. It can be said that the number of unit water in the mix design, the water quantity due to the surface water contained in the aggregate used, and the water quantity taking into account the concentration of sludge contained in the recycling water when using the recycling water are factors that affect the quantity management of ready-mixed concrete. In this study, as a stable quality control method of ready-mixed concrete, a quantity management method by aggregate surface water and a sludge concentration management method according to the use of recycling water were proposed. Thus, we tried to suggest an efficient quantity management method for stabilizing the quality of ready-mixed concrete.

  • PDF

Nonlinear Finite Element Analysis of Reinforced Concrete Beams (철근 콘크리트 보의 비선형 유한요소 해석)

  • 오병환;이성로;이형준;신호상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.49-53
    • /
    • 1991
  • The finite element method is applied to analyze the complicated behavior of reinforced concrete beams. The nonlineartiy in concrete and reinforcement steel has been considered. The effects of bond-slip and aggregate interlock have been also taken into account. It is found that realistic analysis requires those major nonlinearities to be included in the analysis.

  • PDF

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

A study on the planted system of agricultural crops using non-stationary transition probability model (Non-Stationary 추이확률 모형에 의한 농작물의 체계에 관한 연구)

  • 강정혁;김여근
    • Korean Management Science Review
    • /
    • v.8 no.1
    • /
    • pp.3-11
    • /
    • 1991
  • Non-Stationary transition probabilities models which is incorporated into a Markov framework with exogenous variables to account for some of variability are discussed, and extended for alternative procedure. Also as an application of the methodology, the size change of aggregate time-series data on the planted system of agricultural crops is estimated, and evaluated for the precision of time-varying evolution statistically.

  • PDF

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF