• 제목/요약/키워드: Agglomerative hierarchical clustering

검색결과 43건 처리시간 0.019초

An Agglomerative Hierarchical Variable-Clustering Method Based on a Correlation Matrix

  • Lee, Kwangjin
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.387-397
    • /
    • 2003
  • Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.

EXTENDED ONLINE DIVISIVE AGGLOMERATIVE CLUSTERING

  • Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.406-409
    • /
    • 2008
  • Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.

  • PDF

비등방형 확산과 계층적 클러스터링을 이용한 칼라 영상분할 (Color Image Segmentation Using Anisotropic Diffusion and Agglomerative Hierarchical Clustering)

  • 김대희;안충현;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2003
  • A new color image segmentation scheme is presented in this paper. The proposed algorithm consists of image simplification, region labeling and color clustering. The vector-valued diffusion process is performed in the perceptually uniform LUV color space. We present a discrete 3-D diffusion model for easy implementation. The statistical characteristics of each labeled region are employed to estimate the number of total clusters and agglomerative hierarchical clustering is performed with the estimated number of clusters. Since the proposed clustering algorithm counts each region as a unit, it does not generate oversegmentation along region boundaries.

  • PDF

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF

SDN-Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra-Dense Small Cell Networks

  • Yang, Guang;Cao, Yewen;Esmailpour, Amir;Wang, Deqiang
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.227-236
    • /
    • 2018
  • Ultra-dense small cell networks (UD-SCNs) have been identified as a promising scheme for next-generation wireless networks capable of meeting the ever-increasing demand for higher transmission rates and better quality of service. However, UD-SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software-defined networking (SDN)-based hierarchical agglomerative clustering (SDN-HAC) framework, which leverages SDN to centrally control all sub-channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non-cooperative scenarios, respectively.

계층적 결합형 문서 클러스터링 시스템과 복합명사 색인방법과의 연관관계 연구 (The Experimental Study on the Relationship between Hierarchical Agglomerative Clustering and Compound Nouns Indexing)

  • 조현양;최성필
    • 한국문헌정보학회지
    • /
    • 제38권4호
    • /
    • pp.179-192
    • /
    • 2004
  • 본 논문에서는 복합명사에 대한 색인 방법을 다각적으로 적용하여 계층적 결합 문서 클러스터링 시스템의 결과를 분석한다. 우선 한글 색인 엔진과 HAC(Hierarchical Agglomerative Clustering) 엔진에 대해서 설명하고 한글 색인 엔진에서 제공되는 3가지 복합명사 분석 모드에 대해서 기술한다. 또한 구현된 클러스터링 엔진의 특징과 속도 향상을 위한 기법 등을 예시한다. 실험에서는 3가지 복합명사 색인 방법을 기준으로 문서 클러스터링을 수행하고, 실험 결과에 대한 분석에서 복합명사에 대한 색인 방법이 문서 클러스터링의 결과에 직접적인 영향을 준다는 것을 보여준다.

응집력 척도를 활용한 계층별-조결합군락화 기법의 개발 (Development of the Combinatorial Agglomerative Hierarchical Clustering Method Using the Measure of Cohesion)

  • 정현태;최인수
    • 품질경영학회지
    • /
    • 제18권1호
    • /
    • pp.48-54
    • /
    • 1990
  • The purpose of this study is to design effective working systems which adapt to change in human needs by developing an method which forms into optimal groups using the measure of cohesion. Two main results can be derived from the study as follows : First, the clustering method based on the entropic measure of cohesion is predominant with respect to any other methods proposed in designing the work groups, since this clustering criterion includes symmetrical relations of total work groups and the dissimilarity as well as the similarity relations of predicate value, the clustering method based on this criterion is suitable for designing the new work structure. Second, total work group is clustered as the workers who have the equal predicate value and then clustering results are produced through the combinatorial agglomerative hierarchical clustering method. This clustering method present more economic results than the method that clustering the total work group do.

  • PDF

SAHN 모델의 부분적 패턴 추정 방법에 대한 연구 (A Study on Partial Pattern Estimation for Sequential Agglomerative Hierarchical Nested Model)

  • 장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.143-145
    • /
    • 2005
  • In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.

  • PDF

합성곱 오토인코더 기반의 응집형 계층적 군집 분석 (Agglomerative Hierarchical Clustering Analysis with Deep Convolutional Autoencoders)

  • 박노진;고한석
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Clustering methods essentially take a two-step approach; extracting feature vectors for dimensionality reduction and then employing clustering algorithm on the extracted feature vectors. However, for clustering images, the traditional clustering methods such as stacked auto-encoder based k-means are not effective since they tend to ignore the local information. In this paper, we propose a method first to effectively reduce data dimensionality using convolutional auto-encoder to capture and reflect the local information and then to accurately cluster similar data samples by using a hierarchical clustering approach. The experimental results confirm that the clustering results are improved by using the proposed model in terms of clustering accuracy and normalized mutual information.

계층적 클러스터링을 이용한 장면 전환점 검출 (Shot-change Detection using Hierarchical Clustering)

  • 김종성;홍승범;백중환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1507-1510
    • /
    • 2003
  • We propose UPGMA(Unweighted Pair Group Method using Average distance) as hierarchical clustering to detect abrupt shot changes using multiple features such as pixel-by-pixel difference, global and local histogram difference. Conventional $\kappa$-means algorithm which is a method of the partitional clustering, has to select an efficient initial cluster center adaptively UPGMA that we propose, does not need initial cluster center because of agglomerative algorithm that it starts from each sample for clusters. And UPGMA results in stable performance. Experiment results show that the proposed algorithm works not only well but also stably.

  • PDF