• Title/Summary/Keyword: Agent's Voice Type

Search Result 5, Processing Time 0.022 seconds

Exploring the Applicability of Voice-based Psychological Counseling Agent (음성 기반 심리상담 에이전트의 활용 가능성 탐색 연구)

  • Kim, Ji Geun;Yang, Hyunjung;Lee, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.144-156
    • /
    • 2021
  • This study was conducted to explore important factors to consider when designing voice-based psychological counseling agents amid the increasing use of conversational agents in counseling and psychotherapy. 48 participants selected their preferred agent's voice among four types (young women and men, middle-aged women and men) and had a conversation with a psychological counseling agent. They also evaluated the reasons for voice selection, mood changes, perception of the agent's characteristics, and counseling outcomes. As a results, the agent's voice type selected according to the user's gender was not statistically significant. However, the qualitative analysis showed 'comfort' of the voice was an important factor. Next, the user's mood improved significantly after the conversation with the agent, which confirmed the intervention effect. Finally, it was found that expertness and attractiveness perceptions toward the agent contributed to the counseling outcomes. The implications of the study and suggestions for future research were discussed.

The Effect of Preceding Utterance on the User Experience in the Voice Agent Interactions - Focus on the Conversational Types in the Smart Home Context - (음성 에이전트 상호작용에서 선행 발화가 사용자 경험에 미치는 영향 - 스마트홈 맥락에서 대화 유형 조건을 중심으로 -)

  • Kang, Yeseul;Na, Gyounghwa;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.620-631
    • /
    • 2021
  • The study aim to test the effect of voice agent's preceding utterance type on the user experience in the smart home contexts by conversation types. Based on two types of conversation (task-oriented vs. relationship-oriented conversations) and two types of utterance (preceding vs. response utterances), four different scenarios were designed for experimental study. A total of 62 participants were divided into two groups by utterance type, and exposed to two scenarios of the conversation types. Likeability, psychological reactance, and perceived intelligence were measured for the user experience of conversational agent. The result showed main effects of likeability in task-oriented conversations, and of psychological reactance in preceding utterances. The interaction effect demonstrated that preceding conversation improved the likeabilitty and perceived intelligence in the task-oriented conversations.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

The Effect of Interjection in Conversational Interaction with the AI Agent: In the Context of Self-Driving Car (인공지능 에이전트 대화형 인터랙션에서의 감탄사 효과: 자율주행 맥락에서)

  • Lee, Sooji;Seo, Jeeyoon;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.551-563
    • /
    • 2022
  • This study aims to identify the effect on the user experiences when the embodied agent in a self-driving car interacts with emotional expressions by using 'interjection'. An experimental study was designed with two conditions: the inclusion of injections in the agent's conversation feedbacks (with interjections vs. without interjections) and the type of conversation (task-oriented conversation vs. social-oriented conversation). The online experiment was conducted with the four video clips of conversation scenario treatments and measured intimacy, likability, trust, social presence, perceived anthropomorphism, and future intention to use. The result showed that when the agent used interjection, the main effect on social presence was found in both conversation types. When the agent did not use interjection in the task-oriented conversation, trust and future intention to use were higher than when the agent talked with emotional expressions. In the context of the conversation with the AI agent in a self-driving car, we found only the effect of adding emotional expression by using interjection on the enhancing social presence, but no effect on the other user experience factors.

Categorization of Interaction Factors through Analysis of AI Agent Using Scenarios (인공지능 에이전트의 사용 시나리오 분석을 통한 인터랙션 속성 유형화)

  • Cheon, Soo-Gyeong;Yeoun, Myeong-Heum
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2020
  • AI products are used 'AI assistants' as embedded in smart phones, speakers, appliances as agents. Studies on anthropomorphism, such as personality, voice with a weak AI are being conducted. Role and function of AI agents will expand from development of AI technology. Various attributes related to the agent, such as user type, usage environment, appearance of the agent will need to be considered. This study intends to categorize interaction factors related to agents from the user's perspective through analysis of concept videos which agents with strong AI. Framework for analysis was built on the basis of theoretical considerations for agents. Concept videos were collected from YouTube. They are analyzed according to perspectives on environment, user, agent. It was categorized into 8 attributes: viewpoint, space, shape, agent behavior, interlocking device, agent interface, usage status, and user interface. It can be used as reference when developing, predicting agents to be commercialized in the future.