• Title/Summary/Keyword: Aged degradation

Search Result 186, Processing Time 0.028 seconds

Acceleration Test for Package of High Power Phosphor Converted White Light Emitting Diodes (고출력 형광체변환 백색 LED 패키지의 가속시험)

  • Chan, Sung-Il;Yu, Yang-Gi;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This study deals with the accelerated life test of high power phosphor converted white Light Emitting Diodes (High power LEDs). Samples were aged at $110^{\circ}C$/85% RH and $130^{\circ}C$/85% RH up to 900 hours under non-biased condition. The stress induced a luminous flux decay on LEDs in all the conditions. Aged devices exhibited modification of package silicon color from white to yellowish brown. The instability of the package contributes to the overall degradation of optical lens and structural degradations such as generating bubbles. The degradation mechanisms of lumen decay and reduction of spectrum intensity were ascribed to hygro-mechanical stress which results in package instabilities.

A Study on Degradation and Recovery of Damping Capacity in Cu-65%Mn Alloy (Cu-65%Mn 합금의 진동감쇠능 퇴화 및 회복)

  • Chung, Tae-Shin;Jun, Joong-Hwan;Lee, Seung-Hoon;Lee, Young-Kook;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.92-98
    • /
    • 1998
  • Degradation and recovery of damping capacity in a Cu-65%Mn alloy have been studied. When the alloy was isothermally aged at $400^{\circ}C$, the highest damping capacity was observed after aging for 4 hours. In case when the alloy aged at $400^{\circ}C$ for 4 hours was maintained at $100^{\circ}C$, the damping capacity gradually decreased with time. The microstructural observations showed that the formation of subdomains and ${\alpha}$-Mn precipitates are responsible for the degradation of damping capacity. When the degraded specimen was reheated at $250^{\circ}C$ for 30 minutes, the damping capacity was recovered considerably owing to the redistribution of impurity atoms, the extinction of subdomains and the release of damping sources from ${\alpha}$-Mn precipitates during the repeated transformation, fcc${\leftrightarrow}$fct.

  • PDF

Analysis for Insulating Degradation Characteristics with Aging Time for Oil-filled Transformers and/or Correlation between using Linear Regression Method (유입식 변압기의 열화시간에 따른 절연 열화특성 및 선형회귀법을 이용한 상관관계 분석)

  • Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.693-699
    • /
    • 2010
  • General transformer's life is known as paper insulation' life. If a transformer is degraded by these aging factors, it is known that electrical, mechanical and chemical characteristics for transformer's oil-paper are changed. When the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. The paper breakdown is accompanied by an increase in the content of furanic compounds within the dielectric liquid. In this paper it is aimed at analysis on correlation between aging characteristics for insulating diagnosis of thermally aged paper. For investigating the accelerated aging process of oil-paper samples accelerating aging cell was manufactured for estimating variation of paper insulation during 500 hours at $140^{\circ}C$ temperature. To derive the results, it was performed analysis such as tensile strength(TS), depolymerization(DP), dielectric strength(DS), relative permittivity, water content(WC) and furan compound(FC) for aged paper. Also for analyzing correlation between insulating degradation characteristics, we used linear regression method. As as results of linear regression analysis, there was a close correlation between TS and DP. WC, FC. But dielectric strength was a weak correlation with aging time.

Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force (보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가)

  • Ryu, K.S.;Nahm, S.H.;Kim, Y.I.;Yu, K.M.;Son, D.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 1999
  • The integrity of the turbine rotors can be assessed by the coercive force and Vickers hardness of the aged rotors at service temperature. The coercive force measurement system was constructed in order to evaluate material degradation nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and then the seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. The coercive force of the test materials was measured at room temperature. Vickers hardness and coercive force decreased with the increase of degradation. The relationship between Vickers hardness and coercive force was investigated. The degradation of test material may be determined nondestructively by the relationship between Vickers hardness and coercive force.

  • PDF

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Seok, Chang-Seong;Kim, Dong-Jung;Bae, Bong-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2995-3002
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at 630$\^{C}$. And the DC potential drop method and destructive methods such as tensile, K(sub)IC and hardness tests were used in order to evaluate the degradation of 1-Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimated the material degradation, and to analyse the relationship between the electrical relationship between the electrical resistivity and the degree material degradation.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

A Study on the Evaluation of Material Degradation for 2.25Cr-1Mo Steel by Ultrasonic Measurements (초음파 계측에 의한 2.25Cr-1Mo강의 열화도 평가에 관한 연구)

  • 박은수;박익근;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The remaining life estimation for the aged component is very important because mechanical properties of the compo-nents are degraded with time of service exposure in high temperature etc. The destructive method is widely used for the estimation of material degradation, but it has a difficulty in preparing specimens from in-service industrial facilities. In order to evaluate the feasibility of ultrasonic evaluation method for properties of high temperature materials, 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at 63$0^{\circ}C$ were evaluated by ultra-sonic measurements investigating the change of velocities and attenuation coefficient. In this results, attenuation coefficient was found to be sensitive to material degradation mainly attributed to the change of grain size and the precipitation of impurities in grain boundaries, but velocity was not for all specimens.

  • PDF

A Study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.78-83
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method at $630^{\circ}C$. Ultrasonic tests, tensile tests, $K_{IC}$ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter of the signal is sensitive and will be a good parameter to evaluate the material degradation.

  • PDF

Scanning Probe Microscopy Study on the Degradation of Optical Recoding Disks by Environmental Factors (광디스크의 노화에 관한 주사 탐침 현미경 연구)

  • Yoon, Man-Young;Shin, Hyun-Chang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2011
  • The storing ability of information of optical disks directly depends on the physical property of recording unit cells. It means that the degradation of optical disks ultimately causes the loss of the physical and chemical properties of recording unit cells and leads also information, too. We investigated the degradation and life time of optical disks which tell us the longevity of the preservation of information. Optical disks were aged using the accelerated aging system and studied by optical reflectivity spectroscopy and atomic force microscopy(AFM), and the preservation environment of electronic media in National central library of Korea also were analysed. Results show that the double reflective coated optical disks have good preservation of recording information but revealed some deformation of dye area in the AFM images. It means that we should include the mechanical and chemical degradation of the optical disks in the life time expectation evaluation.