• Title/Summary/Keyword: Age-hardening treatment

Search Result 41, Processing Time 0.031 seconds

Characteristics of 14K white gold by age-hardening treatment

  • Yun, Don-Gyu;Seo, Jin-Gyo;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.107.1-107.1
    • /
    • 2012
  • Because of beautiful glossy and color, the value of gold leverage is very high in Europe. For improve the quality of white gold, we performed heat treatment on 14K white gold alloys at various age-hardening conditions. Age-hardening behavior and the related phase transformation changes were studied to elucidate the hardening mechanism of 14K white gold alloys. For solid solution treatment [ST], casted 14K white gold alloy specimens were treated at high temperature ($750^{\circ}C$) during 30 minute, and the specimens dropped to water for quenching immediately. For Age-hardening treatment [AT], the specimens were treated at various temperatures ($250^{\circ}C{\sim}300^{\circ}C$). After the heat treatment, we observed increased hardness from 144 Hv to 214 Hv by Vicker's hardness tester. Variation of the grain size measured by optical microscopy (OM) and scanning electron microscopy (SEM) images. By electron probe micro-analysis (EPMA) mapping analysis, we investigated that irregular particles were changed uniformly. After heat treatment, 14K white gold alloys showed improved hardness and became uniformity of grain size by age-hardening treatment.

  • PDF

Phase Transformation and Mechanical Properties of 14 K White Gold Alloys by Heat Treatments

  • Yun, Don-Gyu;Seo, Jin-Gyo;An, Yong-Gil;Sin, So-Ra;Han, Dong-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.283-283
    • /
    • 2013
  • Because of beautiful glossy and color, the value of gold leverage is very high in Europe. To improve the quality of gold alloys, we performed heat treatment on 14 K white gold alloys by variously changing age-hardening conditions. Age-hardening behavior and the related phase transformation changes were studied to elucidate the hardening mechanism of 14 K white gold alloy. For solid solution treatment [ST], casted gold alloy specimens were treated at high temperature ($750^{\circ}C$) for 30 minutes, and the specimens dropped to water to quench them. For Age-hardening treatment [AT], the specimens were treated at various temperatures ($250{\sim}300^{\circ}C$). After the heat treatment, we observed the phenomenon to increase hardness from 126 Hv to 166 Hv by Vicker's hardness tester. Through electron probe micro-analysis (EPMA) mapping analysis, we investigated that irregular particles were changed uniformly. In the SEM and OM images, two phases of matrix and particle-likestructures were observed, and the precipitation of these elements from the matrix progressed during age-hardening. By transmission electron microscope and X-ray diffraction observation, it was revealed that the formation of the Au3Cu superstructure contributed to the age-hardening at $270^{\circ}C$ in the gold alloy. After the heat treatment, this analysis shows that casted gold alloys were to improve hardness and to moderate surface defects at specific temperatures and duration.

  • PDF

다양한 온도의 Age-hardening에 따른 14K, 18K White gold의 경도 변화

  • Yun, Don-Gyu;Seo, Jin-Gyo;An, Yong-Gil;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.322-322
    • /
    • 2011
  • White gold는 아름다운 광택과 손쉬운 가공성의 장점 때문에 장신구를 비롯한 다양한 분야에서 그 활용 가치가 매우 높다. 본 연구에서 우리는 열처리를 통한 white gold의 hardness강화 및 품질향상을 위하여 다양한 열처리 조건별 기계적 특성변화를 비교 관찰 하였다. 열처리 전 white gold alloy의 구성성분을 조사하기 위하여 EPMA와 ICP-MS를 사용하여 분석 후 그 값을 수치화 하였다. 14K, 18K White gold alloy 총 32개의 시료를 사용하여 $750^{\circ}C$, 30 min의 조건에서 solid treatment 및 quenching 후 $200^{\circ}C{\sim}350^{\circ}C$ 온도 범위에서 $50^{\circ}C$ 간격으로 age-hardening을 실시하였다. 열처리 전과 후 각 조건별 hardness 변화는 Vicker's hardness tester를 사용하여 측정하였다. 또한 age-hardening 후 모든 시료는 optical microscope (OM)을 사용하여 각 열처리 조건 별 grain 들의 배열 및 size의 변화를 관찰하였다. 열처리 전 14K, 18K white gold alloy의 hardness의 평균값은 각각 162 Hv와 196 Hv를 나타내었다. solid treatment 후 그 수치가 146 Hv, 172 Hv로 감소하였고, age-hardening 후에는 hardness 값이 점차 증가하여 14K는 $260^{\circ}C$에서 226 Hv, 18K는 $270^{\circ}C$에서 268 Hv의 가장 높은 수치를 나타내었다. 또한 14K 및 18K는 각각 $260^{\circ}C$, $270^{\circ}C$ 이상에서는 over-aging 현상을 나타내었다. OM 분석 결과 열처리 전 불균일했던 grain들의 배열이 solid treatment 및 quenching 후 다소 균일해짐을 확인할 수 있었고, grain size 또한 열처리 전에 비해 증가함을 알 수 있었다. Solid treatment 후 모든 시료의 hardness값이 전반적으로 감소하였다가 age-hardening을 통해 grain들의 배열이 점차 안정화 되면서 hardness가 증가 하였고, over-aging 구간에서는 급격히 감소하는 경향을 나타내었다. 이 결과들로부터 우리는 14K, 18K white gold alloy 에 대한 age-hardening 최적조건을 도출하였고, 각 열처리 조건별 grain 배열 상태의 변화를 관찰 할 수 있었다.

  • PDF

다양한 온도의 Age-hardening에 따른 14K Yellow Gold의 경도변화

  • Yun, Don-Gyu;Seo, Jin-Gyo;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • Yellow gold는 아름다운 광택과 손쉬운 가공성의 장점 때문에 장신구를 비롯한 다양한 분야에서 그 활용 가치가 매우 높다. 본 연구에서는 yellow gold의 hardness 강화 및 품질향상을 위하여 다양한 열처리 조건 별 기계적 특성 변화를 비교 관찰 하였다. 열처리 전 yellow gold alloy의 구성성분을 조사하기 위하여 EPMA와 ICP-MS를 사용하여 정성분석 및 정량분석 결과를 수치화 하였다. 총 44개의 14K yellow gold를 사용하여 $750^{\circ}C$, 30 min 의 조건에서 solid solution treatment 후 $200{\sim}350^{\circ}C$ 온도 범위에서 $50^{\circ}C$ 간격으로 age-hardening을 실시하였다. 또한 열처리 전과 후 grain 들의 배열 및 size 변화를 관찰하기 위해 식각을 실시하였다. 식각된 시료는 optical microscope (OM)을 통해 각 열처리 조건에 따라 전 후 변화를 관찰 하였다. 열처리 전 14K yellow gold의 hardness의 평균값은 120.6 Hv를 나타내었다. Solid solution treatment 후 hardness는 95.7 Hv로 평균값이 감소하였고, age-hardening 후에는 14K yellow gold는 $260^{\circ}C$에서 159.8 Hv, $270^{\circ}C$에서 170.2 Hv로 열처리 전에 비해 약 41% 증가된 결과를 나타내었다. 하지만 $270^{\circ}C$ 부터는 over-aging 현상을 나타내었다. OM 분석 결과 열처리 전 불균일했던 grain들의 배열이 solid solution treatment 및 quenching 후 다소 균일해 짐을 확인할 수 있었고, grain size 또한 열처리 전에 비해 증가함을 알 수 있었다. Solid solution treatment 후 모든 시료의 hardness 값이 전반적으로 감소하였다가 age-hardening을 통해 grain들의 배열이 점차 안정화 되면서 hardness가 증가 하였고, over-aging 구간에서는 급격히 감소하는 경향을 나타내었다. 이 결과로 우리는 14K yellow gold에 대한 age-hardening 최적조건을 도출 하였고, 각 열처리 조건 별 grain 배열 상태의 변화를 관찰 할 수 있었다.

  • PDF

Effect of CaO Addition on Age Hardening Behavior of AZ91 Alloy (AZ91 합금의 시효경화 거동에 미치는 CaO 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.193-198
    • /
    • 2011
  • Effect of CaO addition on age hardening response has been studied by using optical microscopy, scanning electron microscopy and differential thermal analysis in AZ91 and CaO-containing ECO-AZ91 alloys. After solution treatment, the ${\beta}$($Mg_{17}Al_{12}$) phase formed during solidification mostly disappeared in the microstructure in the AZ91 alloy, whereas numerous ${\beta}$ precipitates containing Ca were still observed in the ECO-AZ91 alloy due to its enhanced thermal stability. The ECO-AZ91 alloy showed the delayed peak aging time and higher peak hardness compared with those of the AZ91 alloy. The activation energies for ${\beta}$ precipitation calculated by means of Kissinger method increased from 71.4 to 85.6 kJ/mole by the addition of CaO, which implies that CaO plays a role in reducing ${\beta}$ precipitation rate in the AZ91 alloy.

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Effects of Mechanical Alloying Treatment on Age Hardening Behavior of Rapidly Solidified Al-5Cr-2Zr Alloy (급속냉각한 Al-5Cr-2Zr 합금의 시효경화에 미치는 기계적 합금화 처리효과)

  • 김완철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 1994
  • The microstructual refinement process of Al-5Cr-2Zr alloys mechanical alloying 30h can be divided in five stages ; initial stage, welding predomminance stage, spherical partical formation stage, convolution welding predominance stage, and steady state. The rate of structural of aluminium splats was roughly logarithmic with processing time ; ${\in}$=k/0.78 ln(1+0.0028t). The age hardening in rapidly solidified Al-5Cr-2Zr alloys is ascribed to the coherency and dispersion hardening. Coherency hardening is occurred by matastable cubic Al3Zr precipitates in Al-Cr-Zr alloys. Dispersion hardening after mechanical alloying is attributed to the finely-dispersed $Al_2O_3$ and $Al_4C_3$ in Al-5Cr-2Zr alloys.

  • PDF

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Changes in Hardness and Damping Capacity of Aged Mg-5%Sn Alloy (시효한 Mg-5%Sn 합금의 경도와 진동감쇠능 변화)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.255-261
    • /
    • 2022
  • In this work, the strain-amplitude independent and strain-amplitude dependent damping capacities of Mg-5%Sn alloy have been investigated as a function of its age-hardening response. The hardness increased with an increase in aging time, reached a peak value after 48 h, and then it gradually decreased. The damping capacities of the Mg-5%Sn alloy exhibited a decreasing tendency in the order of solution-treated, under-aged, peakaged, and over-aged states in the strain-amplitude dependent region, whereas they increased continuously with aging time in the strain-amplitude independent region. The microstructural examination during aging revealed that the lower concentration of Sn solutes in the α-(Mg) matrix and the lower density of the Mg2Sn precipitate particles may well be the crucial factors for better damping values in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.