• Title/Summary/Keyword: Age hardening

Search Result 144, Processing Time 0.046 seconds

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

Effect of Powder Hardening Accelerator on the Physical Properties of Precast Concrete (분말형 경화촉진제를 혼입한 PC부재용 콘크리트의 기초특성에 관한 실험적 연구)

  • Jun, Woo-Chul;Seo, Hwi-Wan;Bae, Yeoun-Ki;Park, Hee-Gon;Min, Tae-Beom;Kwon, Yeong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study is intended to produce a PC (Precast Concrete) member without a steam curing process in developing the high early strength concrete satisfying the condition of 10MPa in compressive strength at the age of 6 hours, and is intended to ensure economic feasibility by increasing the turnover rate of concrete form. Hence, high early strength cement with high $C_3S$ content and the hardening accelerator of powder type accelerating the hydration of $C_3S$ was used. And the properties of concrete were evaluated according to the hardening accelerator mixing ratio (0, 1.2, 1.6, 2.0). No big difference was found from the tests of both slump and air content. When 1.6 % or higher amounts of the hardening accelerator were mixed, the compressive strength of 10MPa was achieved at the age of 6 hours. From the test results of autogenous (drying) shrinkage and plastic shrinkage, it can be seen that there was a difference according to hydration reaction rate due to the addition of the hardening accelerator. However, it was shown that no problem arose with crack and durability. And it was shown that resistance to freezing-thawing, carbonation, and penetration were excellent.

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.

Fire Resistance Assessment of Precast Duct Slab with Fireproof using Hardening Accelerator (경화촉진제를 사용한 내화재 일체형 프리캐스트 슬래브의 화재저항성능 평가)

  • Soon-Wook, Choi;Tae-Ho, Kang;Chulho, Lee;Se Kwon, Kim;Tae Kyun, Kim;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.363-372
    • /
    • 2022
  • Precast concrete is an effective method to increase the construction quality and construction speed by optimizing and making the manufacturing conditions similar. In order to more effectively produce a fireproof material-integrated precast duct slab, the purpose of this study was to determine whether the fire resistance performance of the fireproof layer is maintained when a method of increasing the curing rate using a hardening accelerator is used. As a result of performing a fire resistance performance test on specimens classified according to whether or not the hardening accelerator was included, increase of temperature inside the specimen was high in the specimens using the hardening accelerator, and the section loss of the fireproof layer occurred locally on the surface exposed to fire heating. In conclusion, it is judged that the fireproof layer in the case where the strength at 3th day of age is gained within 1 day curing age using a hardening accelerator does not guarantee sufficient fire resistance performance in the conditions used in this study.

A Study on the Precipitation Behavior of $Al_2Ti$ Phase in $L1_0$-TiAl and $L1_2-(Al,Cr)_3Ti$ ($L1_0$-TiAl 및 $L1_2-(Al,Cr)_3Ti$ 중에 $Al_2Ti$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Structural studies have been performed on precipitation hardening and microstructural variations found in Ti-Al-Cr ternary $L1_0$- and $L1_2$-phase alloys using transmission electron microscopy. Both the $L1_0$ and $L1_2$ phase alloys harden by aging at 973 K after solution annealing at higher temperatures. The amount of age hardening of the $L1_2$ phase alloy is larger than that of the $L1_0$ phase alloy. The phase separation between $L1_0$ and $L1_2$ phase have not been observed by aging at 973 K. But $Al_2Ti$ was formed in each matrix alloy during aging. The crystal structure of the $Al_2Ti$ phase is a $Ga_2Zr$ type in the $L1_0$ and a $Ga_2Hf$ type in the $L1_2$ phase, respectively. At the beginning of aging the fine coherent cuboidal $Al_2Ti$-phase are formed in the $L1_0$ phase. By further aging, two variants of $Al_2Ti$ precipitates grow along the two {110} habit planes. On the other hand, in the $L1_2$ phase, the $Al_2Ti$ phase forms on the {100} planes of the $L1_2$ matrix lattice. After prolonged aging the precipitates are rearranged along a preferential direction of the matrix lattice and form a domain consisting of only one variant. It is suggested that the precipitation of $Al_2Ti$ in each matrix alloy occurs to form a morphology which efficiently relaxes the elastic strain between precipitate and matrix lattices.

Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys (Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향)

  • Kim, Chul-Hyo;Lee, Jeong-Moo;Kim, Kyung-Hyun;Kim, In-Bae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System (B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF